6-1997

Groundwater-Kalamazoo River Interaction Near the Parchment City Wellfield, Parchment, Michigan

W. Richard Laton

Western Michigan University

Follow this and additional works at: https://scholarworks.wmich.edu/dissertations

Part of the Geology Commons, and the Hydrology Commons

Recommended Citation

https://scholarworks.wmich.edu/dissertations/1666

This Dissertation-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Dissertations by an authorized administrator of ScholarWorks at WMU. For more information, please contact maira.bundza@wmich.edu.
GROUNDWATER-KALAMAZOO RIVER INTERACTION
NEAR THE PARCHMENT CITY WELLFIELD,
PARCHMENT, MICHIGAN

by

W. Richard Laton

A Dissertation
Submitted to the
Faculty of The Graduate College
in partial fulfillment of the
requirements for the
Degree of Doctor of Philosophy
Department of Geology

Western Michigan University
Kalamazoo, Michigan
June 1997
A detailed hydrogeologic study of the Kalamazoo River and its interaction with the groundwater was completed near Parchment, Michigan. The Kalamazoo River between Portage Creek and Allegan Dam is a Federal superfund site due to PCB contamination trapped in its sediments. The City of Parchment pumps all of its drinking water from a glacial aquifer 850 feet from the Kalamazoo River. This study focused on the hydrogeology and groundwater/surface interaction of the area through the use of surface and downhole geophysics, installation of monitoring wells and piezometers, seepage meters and chemical sampling. It was determined that the Kalamazoo River is receiving recharge from the adjacent aquifer, however, it was seen in the seepage meter results that this recharge can fluctuate with pumping rates and river stage. The chemical sampling data demonstrated the interaction of the river with the wellfield and the variability of groundwater movement. Although the data does not show impact to the wellfield, it does show that pumping in the wellfield does cause shifts in the hydraulic gradient in the aquifer and in the distribution of chemical species. These pumping induced gradients coupled with high stream stage appear to induce river water to flow towards the wellfield.
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.

UMI
A Bell & Howell Information Company
300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
ACKNOWLEDGMENTS

I am deeply indebted to my chief adviser, Professor W. Thomas Straw for his invaluable guidance throughout this project as well as life. He has been and continues to be a constant source of inspiration and support. He has not only been a great mentor but a dear friend.

I am grateful to Dr. Eliot Atekwana, Dr. Alan Hascall, Madhav Machavaram, Chris Amore, and Mike Dalman for their help in field work, laboratory analysis and moral support. Without their help and guidance none of the following work would have been possible.

I appreciate the help extended by Drs. Duane Hampton, William Sauck, William and Marian Smith, and Susan Burns. I cannot forget the help of Professor R. V. Krishnamurthy and the Institute for Water Sciences Stable Isotope Lab in the helping me with the isotope samples.

To all those who have helped me get to this point of my life, thank you. I only wish that I could mention all of you individually.

W. Richard Laton
TABLE OF CONTENTS

ACKNOWLEDGMENTS .. ii
LIST OF TABLES .. vi
LIST OF FIGURES ... vii

CHAPTER

I. INTRODUCTION .. 1
 Definition of Problem .. 1
II. BACKGROUND ... 9
 Location of Study and Historical Background .. 9
 Location of Study ... 9
 Kalamazoo River Area of Concern ... 12
 Historical Facts ... 13
 Wellhead Protection Report .. 14
III. GEOLOGY ... 17
 Soils, Glacial Geology, Bedrock, Stratigraphy and Geophysics 17
 Soils ... 17
 Glacial Geology ... 20
 Bedrock .. 21
 Stratigraphy .. 22
 Gamma-Ray Logging .. 25
Table of Contents—Continued

CHAPTER

Geophysics .. 29
Ground Penetrating Radar ... 29
GPR Results and Interpretations ... 30
Profile A-A' ... 31
Profile B-B' ... 33
Profile C-C' (a and b) .. 35
GPR Interpretation Conclusion ... 39
Vertical Electric Soundings... 40

IV. HYDROLOGY .. 44

Climate, Groundwater Flow, Surface Water and Water Budget 44
Climate ... 44
Aquifer Tests .. 47
Interpretation of Aquifer Test Results .. 52
Groundwater Flow .. 54
Surface Water ... 56
River Hydrographs (Historical) ... 58
Water Budget .. 60

V. GROUNDWATER-SURFACE WATER INTERACTION 64

Seepage Meters and Analysis ... 64
Seepage Meters ... 64
Table of Contents—Continued

CHAPTER

- Seepage Meter Analysis ... 67
- Seepage Meter Results ... 69

VI. HYDROLOGIC AND TRACER MODELING .. 74

- Chemical Sampling, Inorganic and Stable Isotopes, Tracer Modeling ... 74
 - Sampling Procedure ... 76
 - Sampling Analysis and Results ... 77
 - Modeling ... 81
 - Tracer Results .. 86
 - Summary and Conclusions .. 89

VII. CONCLUSION ... 91

VIII. FUTURE WORK .. 94

APPENDICES

- A. Well Logs ... 96

BIBLIOGRAPHY .. 113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
LIST OF TABLES

1. VES Data, Calculations, and Corrections ... 41
2. Well Diameter and Specific Capacities ... 49
4. Hydraulic Parameters, Well #1 Pumping Test, Parchment, Michigan 52
5. Hydraulic Parameters, Well #1 Recovery, Parchment, Michigan 52
6. Productivity of Glacial Drift and Bedrock Aquifers .. 54
7. Gaging Station Locations, Drainage Area and Average Discharge of Streams Near the Study Area .. 57
8. Kalamazoo County Water Budget Calculations .. 61
9. Calculated Water Budget Measurements of Study Site 62
10. Results of Seepage Meter Trials .. 68
11. General Chemistry Data ... 78
12. Collected δD Data ... 80
13. DIC and δ¹³C Data .. 81
LIST OF FIGURES

1. County Location Map ... 2
2. Kalamazoo River From the City of Comstock to Lake Michigan .. 4
3. Location of PCB Sampling Along the Length of the Kalamazoo River 6
4. Location of Study Site ... 10
5. Detailed Map of Study Area, Including Monitoring Wells and GPR Profiles 11
6. Wellhead Protection Area Showing the 10 Year Capture Zone. Modified from Jones, 1986 16
7. Soils Map. Modified From Austin, 1979 .. 18
8. Transect of Soils Across the Kalamazoo River Valley ... 19
9. Well and Gamma-Ray Log of City of Parchment Well “TW” ... 27
10. Well and Gamma-Ray Log of Monitoring Well “B-Deep” ... 28
11. GPR Profile and Interpretation A-A’ .. 32
12. GPR Profile and Interpretation B-B’ .. 34
13. GPR Profile and Interpretation C-C’a .. 36
14. GPR Profile and Interpretation C-C’b ... 37
15. Schlumberger VES Data and Model Results .. 42
16. Groundwater Flow Map .. 51
17. FEMA Map Displaying in the Shaded Area the 100 Year Flood Plain 59
18. Water Budget Equations .. 61
19. Seepage Meter Design ... 65
List of Figures—Continued

20. Layout of Seepage Meters, Stilling Well and Piezometer 65
21. Seepage Meter Equations... 67
22. 1994 Seepage Flux Measurements With Kalamazoo River Stage..................... 70
23. 1995 Seepage Flux Measurements... 71
24. Quickflow Flow Model of Particle Traces and Groundwater Flow Paths........ 84
25. Distribution of Inorganic Tracer Species.. 85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
CHAPTER I

INTRODUCTION

Definition of Problem

Interaction between waters of the Kalamazoo River (Figure 1) and groundwater in the adjacent alluvial and glacial sediments has not been well documented. Allen and others (1972) suggested that such interaction was minimal at the time of their study because waste clay from paper industries was thought to have effectively sealed the riverbed, even though no supporting data were available. In fact, control of clay-rich paper mill waste from adjacent landfills entering the river, coupled with erosion of the streambed below Comstock, strongly suggests that the river water and adjacent groundwater are in hydraulic communication. This interaction, combined with documentation of extensive Polychlorinated biphenyl (PCB) contamination of sediments associated with the Kalamazoo River, have raised the level of concern regarding the quality of water being pumped from glacial aquifers adjacent to the river. A study of the Kalamazoo River fish population shows high concentrations of these carcinogens in their flesh. The PCB contamination has also been detected predominantly in the sediment of the Kalamazoo River and Portage Creek. Elevated levels of PCBs have also been detected in the water column and fish due to physical, chemical and biological interactions with the contaminated...
sediments. The primary historical source of this contamination is thought to be paper mill wastewater, which contained an estimated 160,000 kilograms (352,000 pounds) of PCBs discharged from the paper industries located along these waterways from 1950-1970 (Hanshue, 1993). Sampling and analysis by the Michigan Department of Environmental Quality (In 1994, the environmental section of the Michigan Department of Natural Resources was renamed the Michigan Department of Environmental Quality, MDEQ.) suggest that the majority of the PCBs that have been released are redeposited along the banks of the Kalamazoo River and in the bottom sediments of the impoundments behind the six major dams or spillways along the river (Hanshue, 1993) (Figure 2). Currently, erosion of poorly constrained sediments in landfills adjacent to the river is suspected of causing continued contamination. Recent evidence suggests that the river continues to be polluted by at least one major source upstream of its confluence with Portage Creek, as well as one source upstream Portage Creek (Yeasted, 1986).

Surface waters of Kalamazoo County are predominantly calcium bicarbonate type, although dissolved sulfate concentrations are slightly higher in streams in the southeastern and northwestern parts of the county. The water in most streams is hard to very hard (>121 mg/l) (Allen and others, 1972; Rheaume, 1990). Sampling and analysis for PCBs in the segment of the river near the study site have shown relatively low levels of contamination. Aquatic life in the river is considered to be environmentally stressed because of the close proximity to the Kalamazoo Wastewater Treatment Plant (KWTP) and James River Paper Company (JRPC)
outfall (Yeasted, 1986). Since 1977, the Michigan Department of Public Health has issued an annual advisory warning people against eating fish from the Kalamazoo River downstream of the City of Kalamazoo because of PCB contamination (Hanshue, 1993).

Surface sediment samples taken between the mouth of Portage Creek and Main Street in Plainwell, Michigan, had average PCB concentrations of 9.0 parts per million (ppm) in 1976, 36.2 ppm in 1982, and 13.0 ppm in 1984 (Yeasted, 1986). No general trends can be detected from these annual averages. However, based on the upstream-downstream location of each of the samples, some spatial distribution trends are apparent (Figure 3). All of the concentrations in the 1976 data were less than 15 ppm and the PCBs were observed to be distributed throughout the entire river. In the 1982 and 1984 data, the PCBs were no longer evenly distributed, but instead they were apparently concentrated upstream near Michigan Avenue (Figure 3). The Kalamazoo River adjacent to the study site is considered to be undergoing erosion and as a result, upstream sediment is not expected to be deposited in this area. A PCB concentration of 57 ppm was reported at Patterson Avenue in the 1982 results. Downstream, values reported for samples taken at D-Avenue and Commerce Street were as low as 1.6 and 1.0 ppm respectively (Figure 3) (Yeasted, 1986).

According to Yeasted (1986) the effects of Portage Creek's PCB discharge to the Kalamazoo River could have been partially masked by the proximity of the KWTP discharge, an additional historical source of PCBs. In spite of the
interference, however, he considered the discharge concentrations of PCBs from Portage Creek to be significant.

Only 242 surface and core samples were taken for the entire reach of interest [approximately 135 kilometers (80 river miles)] between 1971 and 1985 (Figure 2). Given this number of samples over such a large study area, it is difficult to calculate representative averages and to draw fully supportable conclusions. PCB concentrations in sediments may also vary greatly within a small area. Therefore, the locations of the samples within a segment of the river valley may give non-representative average values for that particular area (Yeasted, 1986).

The Kalamazoo River is a Federal Superfund site in the 60-kilometer (35-mile) stretch between the mouth of Portage Creek inlet and the Allegan Dam (Figure 2). This stretch is also a site under Part 201 of the Natural Resources and Environmental Protection Act, Michigan Public Act 451 of 1994 as amended, between Allegan Dam and Lake Michigan.

Basic questions concerning the hydrogeological interaction between the Kalamazoo River and groundwater need to be addressed in this “Area of Concern”, especially at such locations as the stretch of river adjacent to the City of Parchment where groundwater is used as the sole source of municipal water. Possible major concerns to the City of Parchment wellfield include, but are not limited to, the following: (a) the close proximity of the wellfield to the Kalamazoo river; (b) the relatively shallow depth of the municipal wells, less than 21 meters (71 ft); (c) the undetermined extent of a confining clay layer throughout the area; (d) the close
proximity of the JRPC landfill; (e) the proximity of the North American Aluminum plant and landfill; and (f) the physical location of the wellfield (downstream of the City of Kalamazoo). These factors raise questions about how future clean-up efforts would affect the City of Parchment’s municipal water supply. These possible impacts and concerns can be best addressed by an extensive hydrogeological study of this precariously placed municipal wellfield.

The hydraulic connections between groundwater and surface water systems are critical in the management of water resources. An incomplete understanding of shallow groundwater flow systems and their influence on the surface waters, which depend on groundwater discharge, can result in drastic reductions in flow, water availability for direct withdrawal (municipal, industrial and private water supply), and habitat loss during drought periods. Improved understanding of these factors can facilitate development of basic water management strategies to cope with periods of abnormally high and low precipitation. A thorough investigation of these basic hydrogeological parameters should precede any efforts to clean up the problems associated with contamination in the Kalamazoo River. The data necessary for such an understanding can be generated through an investigation of the watershed contributions made to the Kalamazoo River from direct precipitation, runoff, and the relationship and interplay of the surface water with groundwater. Results of this study must include a detailed analysis of groundwater interaction with the river system/wellfield and provide a basis for the long-term watershed/wellfield management.
CHAPTER II

BACKGROUND

Location of Study and Historical Background

Location of Study

The main focus of the study is the Kalamazoo River floodplain and the upslope area adjacent to and within the City of Parchment, Cooper Township (Sec. 34, T. 15 S., R. 11 W.), Kalamazoo County, Michigan (Figure 4). The primary study area is owned by Consumers Power Company and is located between the Kalamazoo River, the JRPC (formerly the Brown Company) and the City of Parchment's Wellfield. The City of Parchment Wellfield is approximately 260 meters (850 ft) from the east bank of the north-flowing Kalamazoo River and south of the confluence of Spring Brook with the Kalamazoo River (Figure 5). The northern border of the JRPC property lies 300 meters (977 ft) to the south of the study area and city wellfield. Cultural features at the site include several north-south overhead power lines situated along the river and the abandoned Penn Central railroad grade which is located between the Kalamazoo River and the City of Parchment's Wellfield (Figure 4).
Figure 4. Location of Study Site.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Kalamazoo River Area of Concern

By 1986, the Michigan Department of Natural Resources had identified several PCB contaminated areas along the Kalamazoo River between the City of Kalamazoo and its mouth at Saugatuck, Michigan, on Lake Michigan. Reported data clearly indicated that PCBs had migrated downstream from the mouth of Portage Creek and that upstream Portage Creek sources owned by the Potentially Responsible Parties (PRPs) have continued to cause contamination. Based upon these data, the MDEQ expanded the Remedial Investigation and Feasibility Study (RI/FS) to include approximately 135 kilometers (80 miles) of the river from Morrow Lake Dam to the mouth of the Kalamazoo River (Figure 2).

The PCB contamination was apparently caused by paper mills, which recycled carbonless copy paper containing PCBs. Waste from these operations was dumped into Portage Creek and placed in landfills adjacent to this stream and the Kalamazoo River between 1957 and 1971 (Hanshue, 1993). On August 30, 1990, based on the severity of the contamination, the Environmental Protection Agency (EPA) officially placed the site on the National Priority List (NPL) pursuant to the Comprehensive Environmental Response, compensation and Liability Act (CERCLA) or Superfund, 1980 PA 96-510 (Hanshue, 1993). The State of Michigan has identified 3 PRPs located several kilometers upstream: HM Holdings, Inc./Allied Paper Company, Georgia-Pacific Corporation, and Simpson-Plainwell Paper Company. This group of PRPs signed an Administrative Order by Consent to fund and conduct a Remediation Investigation and Feasibility Study (RI/FS) (1992).
The major site of concern to the MDEQ is the Allied Paper, Inc./Portage Creek/Kalamazoo river area. This site includes the Allied Paper, Inc., property; a 4.8 kilometer (km) (3 mile) stretch of Portage Creek where the creek meets the Kalamazoo River; and a 56.3 km (35 mi.) stretch of the Kalamazoo River, which involves extensive PCB contamination of the soil, sediment, water column, and biota (Hanshue, 1993). The main study area of focus is located within this 56.3 km (35 mi.) stretch.

Historical Facts

Kalamazoo County, located in southwest Michigan, has a population of 223,411 according to the census data of 1990. Cooper Township, which lies in the north-central section of the county, has 8,442 residents, most of who live in the City of Parchment (Figure 4). Vulnerability of the drinking water supplies due to surface contamination is of great interest to county and township residents because all are dependent on groundwater as their sole source of drinking water. The MDEQ has confirmed four organic chemical contaminated wellfields within Kalamazoo County. Several other wellfields in the county are approaching the regulated contaminant levels due to elevated levels of nitrates (Cousins-Leatherman, Foust, and West, 1992). At the present time the City of Parchment’s Wellfield is not listed as one of the contaminated sites or as a site that is approaching regulated levels.

As of 1992, the MDEQ had identified 107 sites of environmental contamination in Kalamazoo County under Part 201 of Natural Resources and
Environmental Protection Act, Michigan Public Act 451 of 1994 as amended. Of the 107 sites, 88 are known to be sites of groundwater contamination. The MDEQ had also identified 157 locations under Part 213 of Natural Resources and Environmental Protection Act, Michigan Public Act 451 as amended (March 1992), with confirmed releases from underground storage tanks and other sources. Of the 157 sites, 48 locations have confirmed groundwater contamination (Cousins-Leatherman, Foust, and West, 1992).

Wellhead Protection Report

In 1992, the City of Parchment spearheaded a Wellhead Protection Area (WPA) program (Jones, 1992). The initiation of the Wellhead Protection Program came out of the 1986 amendments to the Safe Drinking Water Act (SDWA), 1974, 42. USC, Section 1428(E). The purpose of the amendment was to establish a program to prevent future risks and manage existing risks to public water supplies. The federal government placed the responsibility for implementing this program on the individual states. In Michigan the responsibility falls to the MDEQ, Public Health Division.

The leading agency of the wellhead protection program in Cooper Township was the City of Parchment in cooperation with the local township government. This cooperation was vital because (a) the wellfield, which is owned and operated by the City of Parchment, provides water to both City of Parchment and Cooper Township.
residents; and (b) the wellfield is located in Cooper Township outside the City of Parchment.

The WPA program requires the identification of a wellhead protection area for the wellfield (Figure 6). The area and the hydrogeological parameters considered were defined in the Well Head Protection Report as "...the surface and subsurface area surrounding a water well or wellfield, supplying a public water system, through which contaminants are reasonably likely to move toward and reach such water well or wellfield" (Jones, 1992). The wellhead area was based upon a number of hydrogeological and well parameters. These parameters included the direction of groundwater movement, the travel time of groundwater flowing to the well, pumping rates, geologic and hydrogeologic aquifer boundaries, and the degree of aquifer confinement.
Figure 6. Wellhead Protection Area Showing the 10 Year Capture Zone. Modified From Jones, 1986.
CHAPTER III

GEOLOGY

Soils, Glacial Geology, Bedrock, Stratigraphy and Geophysics

Basic topography of the study site is flat with a gradual increase in slope eastward away from the river (Figure 4). Most of the area has been topographically altered within the last forty years (Williams & Works, 1980). A steep slope approaches the river from the west (Figure 4) where the river borders the west valley wall of the north-south oriented Kalamazoo River valley. The study area is underlain by unconsolidated materials that consist of glacially-derived deposits (glacial drift) of Pleistocene age and alluvial deposits of Holocene age (Rheaume, 1990). The Kalamazoo River in the vicinity of the study site has reworked the glacial material. The sediments next to the river are interbedded with old river channels and deposits associated with possible flooding events.

Soils

Three soil types are present in the study area (Figure 7): Glendora Sandy Loam (Gn), Brady Sandy Loam, 0 to 3% slope (BdA), and Gilford Sandy Loam (Gd) (Austin, 1979). Although the Gilford soil (Gd) is the principal soil type in and adjacent to the main study area, the dominant soil type along the river is the Glendora
Figure 7. Soils Map. Modified From Austin, 1979.

(Gn). The Brady Sandy Loam soil (BdA) is present over most of the wellfield property.

A transect from the east margin of the Kalamazoo River eastward across the river valley (Figure 8) crosses these soils in the following sequence: Gn-Glendora sandy loam; BdA-Brady sandy loam (0 to 3% slope); Gd-Gilford sandy loam; Ad-Adrian muck; OsB-Oshtemo sandy loam (1 to 6% slope) or Ub-Urban land; OsB-
Oshtemo sandy loam (12 to 18% slope); and the UkB-Urban land-Kalamazoo complex (0 to 6% slope).

Figure 8. Transect of Soils Across the Kalamazoo River Valley.

The soil in the area below the JRPC landfill is categorized as Ua-Udipsamments, level to steep, a very sandy soil with a high permeability. This is significant because the landfill is only 300 meters (977.5 ft) from the main transect.
line through the study area (Figure 5). The landfill area consists of level to steep, moderately well-drained or well-drained, soils that have been disturbed by man. As mapped, this unit includes sanitary landfills, flood plains, and lowlands that have been filled with various types of natural and manmade debris. The fill material is primarily paper mill waste and is normally 0.3 to 3.0 meters (1 to 10 ft) thick and commonly is covered with sandy or loamy material. To date, no permanent impermeable cover has been placed over the material. Runoff, which depends on the slope, for this particular area is relatively low due to the high water retention capacity of the waste. Some ponded water is present at the northern end of the landfill and within wetlands adjacent to the landfill.

Glacial Geology

The glacial drift consists of material left by continental glaciers which covered Michigan as recently as 15,000 years ago (Straw and Kehew, 1995). The glacial material within the study area consists of till (a mixture of boulders, sand, and clay that is released directly from melting ice), outwash (sand and gravel which is washed and deposited by meltwater flowing away from a glacier) and lacustrine deposits (sand, silt, and clay which settles out in the ponded water of glacial lakes).

During the retreat of the continental ice sheet across this area, ponded waters near the center of Kalamazoo County that had been draining to the south began to drain to the north through a topographic low in the moraine in Cooper Township. This change in direction of drainage resulted in downcutting of the outwash plain by
24.4 to 30.5 meters (80 to 100 ft) (Deutsch and others, 1960). The downcutting of the glacial-drainage channels of the present-day Kalamazoo River valley (Martin, 1957) resulted in the deposition of the material which now is present within the main study area. Most of these deposits have a grain size of medium to very coarse sand to gravel with some layers of clayey silt (Monaghan and others, 1983; Rheaume, 1990). The Kalamazoo River valley cuts through this glacial material and is about 1.6 kilometers (1 mile) wide in the study area. The present Kalamazoo River appears to be too small to have carved this broad river valley (Straw and Kehew, 1995). It is thought that the river flow through the valley was much greater in the past and that a glacial outburst flood (or floods) may have cut the shallow gorge that now forms the present Kalamazoo River valley. An outburst flood is thought to have originated northeast of Kalamazoo County, apparently connecting a series of topographic lows formed by the melting of buried ice blocks along the present course of the Kalamazoo River valley (Straw and Kehew, 1995).

Bedrock

The bedrock in the area is the Lower Mississippian Coldwater Shale. The topographic surface on the underlying bedrock has a low to moderate relief and reflects the erosional surface that existed prior to glaciation (Williams & Works, 1980). Well logs from the JRPC (Appendix A) show that the shale was encountered at a depth of 25 meters (85 ft). This correlates with other maps that approximate the depth to bedrock to be 25 to 30 meters (85 to 100 ft) (Williams & Works, 1980). The
Coldwater is a gray, micaceous shale that has been truncated by erosion and is approximately 150 meters (500 ft) thick in the area of study (Western Michigan University, 1981). The Coldwater Shale has been interpreted as being part of a deltaic sequence. The thicker, more proximal portion of the delta occurs in eastern Michigan and limestone is interbedded in the relatively thinner central portion that is present in the study area (Lilienthal, 1978). The significance of the presence of the Coldwater Shale is that the shallow bedrock surface provides a base for the useable aquifer in this area. The Coldwater Shale in this area makes an excellent confining layer due to its low permeability. Because of the low permeability, municipalities prefer not to use it for producing water. However with fracturing and where interbedded sands are present, potable water wells can be constructed (Western Michigan University, 1981). Locally, only one family uses water derived from bedrock. This well, which is 55.5 meters (182 ft) deep, is located within a water-bearing section of the Coldwater Shale (Figure 4).

Stratigraphy

Stratigraphic units were depicted in well logs from JRPC, City of Parchment Wellfield and monitoring wells installed for this study (Figure 5). Split spoon, GeoProbe®, and grab samples were taken at specific sampling sites within the study area to aid in the geologic description of the study site. A series of units within the glacial drift are described in the following paragraphs starting with the shallowest unit.
Running north-south through the study area is an old railroad grade (Figure 5) built up approximately one meter (3.3 ft) and is comprised of a mixture of cinders, ashes and other fill material. Also running north-south through the area is a road maintained by Consumers Power (Figure 5) for maintenance on their overhead power lines. This road stands several meters higher than the surrounding land surface. Both roadways help protect the wellfield from being flooded by the Kalamazoo River during high water periods.

The top 3 to 5 meters (9.8 to 16.4 ft) of the native material can be grouped together as one unit. This encompasses the top reworked organic soils, and the underlying sand, gravel, silt and clay. For the most part this unit coarsens downward, except in areas of buried river channels or where it is intermixed with silty-clay lenses. In areas surrounding the study site, some fill material has been deposited. The water table is in this unit and lies at a depth of 0.0 to 1.83 meters (0.0 to 6.0 ft).

The next lower stratigraphic unit is of major importance to the overall hydrology of the study area. This layer is a bed of low permeability clay that is locally interbedded with layers of sand and gravel. The clay layer ranges in thickness from 1.83 to 32 meters (6 to 105 ft), with the maximum known thickness being reported in a local residential well (Figure 5) (Appendix A). Lying directly on top of this layer is a coarse lag deposit of gravel with material as large as 10 centimeters in size. This unit is present in all the well logs throughout the area except in one monitoring well on the south end of the JRPC property.
This underlying unit was described in the Brown Company report of 1980 as an aquiclude (Williams & Works, 1980). An aquiclude as defined by Fetter (1994) is a low-permeability unit that forms either the upper or lower boundary of a groundwater flow system. A more proper term to be used for this layer is aquitard, which is defined by Fetter (1994) as a layer of low permeability that can store groundwater and also transmit it slowly from one aquifer to another. In well “C-Deep”, which is 6.1 meters (20 ft) from the Kalamazoo River, drilling problems were encountered. A loss of water was recorded as the hollow stem augers began to penetrate the lower aquifer. This suggests that the clay layer is confining at this point but that the lower aquifer is not necessarily under constant artesian conditions. Another possible explanation for this lack of artesian condition is that pumping by the City of Parchment from wells some 260 meters (850 ft) away had reduced the hydraulic head in the lower aquifer at this location. It seems likely that this layer plays an extremely important role in the protection of the lower aquifer from surface contamination from the JRPC landfill, Kalamazoo River and other possible sources.

Under the clay-rich confining layer is the main producing aquifer unit. This layer consists of beds of coarse gravel with some interbedded sand layers. Both the City of Parchment and JRPC use this unit as a source of water supply. The deposits in this unit probably originated from glacial outwash deposited by meltwater that flowed away from a melting ice front to the northeast (Williams & Works, 1980). Near the north end of the JRPC property this unit thins to 3.35 meters (11 ft)
(Williams & Works, 1980). The unit ranges from 4.0 to 7.9 meters (13 to 26 ft) in the area of the City of Parchment Wellfield (Appendix A).

Underlying the main aquifer unit is a layer of glacial till. This unit is reported on drilling logs throughout the area. Beneath the JRPC property, several monitoring wells penetrated approximately 12 meters (40 ft) of material described as being predominantly clayey (Williams & Works, 1980). The City of Parchment wells were completed above this layer, but mention hard sandy clay or clay layer at the bottom of the borings. Logs for other wells in the area suggest that this layer is even thicker than the 12 meters (40 ft) reported by the JRPC (Appendix A).

Gamma-Ray Logging

Two monitoring wells were logged using the KECK Model SR-3000 gamma-ray logging system. Gamma-ray logging measures the naturally occurring radiation being emitted from the materials within a short distance of the borehole. It has been estimated that 90 percent of the gamma rays detected during logging originate within 152 to 305 millimeters (6 to 12 inches) of the borehole wall. Thus, a relatively small and roughly spherical volume of material contributes most of the natural radiation that is detected (Driscoll, 1986). This record of naturally emitted gamma radiation is commonly used as a qualitative guide for stratigraphic correlation and permeability (Driscoll, 1986). Gamma radiation is emitted from certain elements within the geologic material that are unstable and decay spontaneously into other, more stable, elements. Clays and shales generally contain high concentrations of radioactive
isotopes, usually potassium (^{40}K). In contrast glacial sand and gravel is generally composed of the resistant mineral quartz, which is composed of the stable elements silicon and oxygen, and as a consequence emit only very low levels of radiation.

Gamma-ray logging is the correlation tool of choice for the environmental consulting industry and State Health Departments, because it can penetrate high-density material such as casing and cement-based grout. The principal advantage gamma-ray logging has over standard electrical logging, is that it can be used in either cased wells or in open boreholes containing air, water, or drilling fluid. Electrical logging can only be done in uncased boreholes filled with a fluid.

Wells "B-Deep" and the City of Parchment monitoring well "TW" were gamma-ray logged (Figures 9 & 10). A time constant of 10 seconds and a scale of 1000 counts per minute (cpm), full scale were used. Well "B-Deep" had a total depth of 12.1 meters (39.7 ft). At the surface (0.0 to 1.2 m; 0.0 to 4 ft), topsoil can be seen in the high gamma kick to the right. Below this, a sandy clay layer, approximately 2.43 meters (8 ft), can be identified. The local clay-rich layer is represented in the log from 4.26 to 8.53 meters (14 to 28 ft). The bottom portion of the gamma-ray log shows the producing aquifer to be a sand and gravelly formation (Figure 9). Well "TW" has similar stratigraphy to that of the well "B-Deep", but, the total length of the log is only 17.22 meters (56.5 ft). The confining layer is represented in the gamma logs by only 3.05 meters (10 ft) of clay-rich material (Figure 10) at this location. Overall, it was found that the gamma-ray logs correspond closely to the driller's logs for these particular wells (Figure 9 & 10).
Figure 9. Well and Gamma-Ray Log of City of Parchment Well "TW".

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Figure 10. Well and Gamma-Ray Log of Monitoring Well “B-Deep”.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Geophysics

Due to overhead power lines and other obstacles, soil borings were not appropriate in most locations throughout the study area; consequently, geophysics was deployed to map the underlying geology. These studies were integrated to map the local confining layer that is present throughout much of the area in the well logs. A ground-penetrating radar (GPR) survey was conducted in conjunction with surface resistivity profiles [vertical electric soundings (VES)]. The survey lines were laid out both perpendicular and parallel to the river. The information derived from these studies was used to formulate the geologic history of the site, and its overall importance to the hydrogeological processes contained within the study area.

Ground Penetrating Radar

Several GPR profiles were run across the study area to document the position of the water table and the location of underlying clay layer(s). The downward looking radar was used to detect the subsurface disturbances that are in electromagnetic contrast with the surrounding media (Daniels, 1989). Changes in water content, grain size, porosity, and sedimentary structures can commonly be detected using GPR. The profiles are vertical representations of the subsurface, and clearly show the various interfaces defined by contrasts in the electromagnetic properties: (a) conductivity, (b) relative permittivity, and (c) magnetic permeability (Daniels, 1989, Sauck, 1995). In this sedimentary environment, conductivity and relative permittivity are most important (σ and εr, respectively) because they are
controlled by the water content. Thus, even fairly small changes in water content, as
occur at boundaries between layers having different grain sizes or textures, can
produce appreciable reflector coefficients. This is true in both the vadose zone and
the saturated zone. The permittivity controls the radio wave velocity, with velocity
proportional to the free space velocity (c), and inversely proportional to the square
root of εr. The conductivity controls the attenuation, or loss of signal strength with
depth. Higher conductivity soils are less penetrable by the radio pulses.

GPR Results and Interpretations

Three profiles were run through the study area and city wellfield (Figure 5). Two were north-south trending and one ran west-east. The first two of these profiles were run between well nests B and C. A-A' runs west-east from the river's edge under the north-south oriented power lines to well "B-Deep". B-B' runs north-south under the power lines crossing the A-A' profile at the 35 meter (114.8 ft) mark. This corresponds to the 40 meter (131 ft) mark on B-B'. The third profile (C-C') runs north-south inside the City of Parchment's Wellfield between wells #3 and #1. The Geophysical Survey Systems Incorporated (GSSI) SIR-10 GPR unit with 100 MHz biastatic antennas and a 15 m (49.2 ft) cable was utilized for this study. The GPR velocity versus depth function has been interpreted from the sand-clay interface at 5.49 m (18 ft) in well "B-Deep". This resulted in an average velocity of 0.078
m/nsec, corresponding to a relative permittivity of 14.6. Using the average velocity,
the total depth of penetration is interpreted as 9.36 m (30.7 ft) for a 240 ns scan
length. The following describes each of these profiles and its significance to the
geology of the study area.

Profile A-A’

A-A’ (Figure 11) starts 10 m (32.8 ft) from the river’s edge and runs eastward
for 55 m (180.5 ft). This profile was run October 19, 1994 with a range of 240
nanoseconds at 512 samples/scan. The field acquisition parameters were: (a) a 3
stage vertical low pass filter of 80 cycles/scan, (b) a 3 stage vertical high pass filter of
10 cycles/scan, and (c) a horizontal smoothing filter set to do a running average of 5
scans. The post processing filters included a vertical boxcar high pass filter of 33
sample window length and a low pass filter of 7. The horizontal boxcar smoothing
filter was 3 scans wide. The post-processing filters were run only on samples 256
through 512 (i.e., the lower half of the displayed section.)

The A-A’ profile crosses the B-B’ profile at the 35 m (114.8 ft) mark. Well
“C-Deep” is located at the 10 m (32.8 ft) mark, and well “B-Deep” is located at the
65 m (213.3 ft) mark. Using these wells as controls for the profile, the description of
depths to reflectors and interpretation of those reflectors are as follows.

The main reflector running through the profile is located at a depth of 5 m
(16.4 ft) on the west and rises to a depth of 2.1 m (6.9 ft) on the east end of the line.
The sloping of this layer towards the river represents a fairly recent position of the
river channel. This reflector defines the top of the clay-rich confining layer that
separates the upper aquifer from the producing aquifer. However, since there appear to be reflectors represented below this layer, the continuity of the confining layer is not confirmed. That is, the GPR profiles show that some areas away from the wells may not be as well defined while the well logs from both "C-Deep" and "B-Deep" show that the clay-rich layer is not only present but also well defined. The water table is quite close to the surface in the area [less than 1.5 m (4.9 ft) on average]; the relatively horizontal reflector at the top of the profile represents this.

Profile B-B′

B-B′ (Figure 12) runs 40 m (131.2 ft) south of A-A’ and north for 35 m (114.8 ft) for a total length of 75 m (246 ft). This profile was run October 19, 1994 with a range of 240 nanoseconds at 512 samples/scan. The field acquisition parameters were: (a) a 3 stage vertical low pass filter of 80 cycles/scan, (b) a 3 stage vertical high pass filter of 10 cycles/scan, and (c) a horizontal smoothing filter set to do a running average of 3 scans. The post processing filters included a vertical boxcar high pass filter of 33 sample window length and a low pass filter of 7. The post processing filters were run only on samples 256 through 512, i.e. the lower half of the displayed section.

Power lines run overhead parallel with this profile. This profile crosses the A-A′ profile at the 40 m (131 ft) mark. Using wells located at the ends of the A-A′ profile as controls for this profile, the description of depths to reflectors and interpretation of those reflectors are as follows.
The main reflector running through the profile is located at an average depth of 3.5 m (11.5 ft). Using the information from well “B-Deep” and line A-A’, this reflector is interpreted as the top of the clay-rich layer. The reflector separates at 20 m (65.6 ft) into two separate reflectors paralleling each other through the rest of the profile. From 42 m to 78 m (137.8 to 255.9 ft) the main reflector is absent shallow, but shows at a depth of 5.8 m (19 ft). This is interpreted as an old river channel that cuts through the area. Steep dipping reflector near the surface supports this interpretation. The water table appears in the upper part of the profile with an average depth of 0.75 m (2.5 ft).

Profile C-C’ (a and b)

C-C’ starts adjacent to the City of Parchment Well #3 and runs southward toward Well #1 for a total length of 240 m (787.4 ft). For interpretation and presentation purposes this profile is broken into two sections C-C’a (Figure 13) and C-C’b (Figure 14). C-C’a is 125 m (410 ft) and C-C’b is 115 m (377.3 ft) long. This profile was run January 22, 1997 with a range of 240 nanoseconds at 512 samples/scan. The field acquisition parameters were: (a) a 4 stage vertical low pass filter of 70 cycles/scan, (b) a 3 stage vertical high pass filter of 8 cycles/scan, and (c) a horizontal smoothing filter set to do a running average of 5 scans. The post processing filters included a vertical boxcar high pass filter of 27 sample window length and a low pass filter of 5, with a horizontal boxcar smoothing filter of 5 scans wide.
There are several wells located along this profile. Conditions during data collection were sloppy with snow cover, and it should be noted that this profile was run on a built up utility road. City Well #3 is located at the 0.0 m (0.0 ft) north, Well #2 at 113 m (370.5 ft), Well TW at 123 m (403.6 ft) and Well #1 at the 235 m (771 ft) marks. Using these wells as control for the profile the following description of depths to reflectors and interpretation of those reflectors are as follows.

Three major reflectors are present in profile C-C'a. The top reflector, which averages 1.2 m (3.9 ft) in depth, is the base of the maintenance road. The next reflector, which ranges in depth from 3.5 to 5 m (11.5 to 16.4 ft), represents the water table reflector. The third reflector averages 6 to 7.5 m (19.7 to 24.6 ft) in depth and correlates well with the well logs as the clay-rich layer. At 15 m (49.2 ft) south, a steeply dipping reflector is present, representing an old river channel cut. This same reflector is less defined past the 100 m (328.1 ft) south area.

Profile C-C'b is a continuation of profile C-C'a. The road base reflector is still present throughout the profile. However, the water table reflector is not as well defined through this portion of the profile. The bottom reflector representing the clay-rich confining layer has several steep dipping reflections, one at 150 m (492 ft) south and the other at 180 m (590.6 ft) south. These represent old river channel terraces.
GPR Interpretation Conclusion

Several possible sources of error must be discussed. One possible error is that all or part of the antennae lifting-up over obstacles caused decoupling and ringing in the record. Another cause of error that was encountered at the study site was the crossing of power lines perpendicular to the profile. This may cause large hyperbolas, which could be misinterpreted as steeply dipping geologic structures. Along profile B-B' several grounded steel structures (power line poles) were passed which caused hyperbolas on the depth section. Along C-C' the metal casing from the wells could cause a similar problem. The change in surface soil conductivity along C-C' could change the attenuation/brightness of deeper reflectors. This would account for the lack of water table definition in the southern portion of the C-C' profile.

The GPR profiles give an indication of the continuity (or lack thereof) of the clay-rich confining layer within the study area. From the profiles it is seen that the clay-rich layer is not as defined as one is led to conclude by the well logs. This lack of definition is probably due to buried river channels formed over time during the development of the Kalamazoo River valley. The mapping of these buried river channels over the area surrounding the City of Parchment Wellfield is vital to its overall wellhead protection plan.
Vertical Electric Soundings

Geophysical earth resistivity was used in conjunction with the ground penetrating radar. This method utilized a pair of current electrodes that were driven into the ground, activated, and the resulting potential difference measured between a pair of potential electrodes using a sensitive voltmeter. By applying a known current over a known separation of electrodes (which is increased in a stepwise manner) the potential distribution (proportional to the apparent resistivity) and the path of the current flow, was calculated. Through the use of a vertical sounding, horizontal layers of high/low conductivity/resistivity can be mapped, although with ambiguity of layer thicknesses and resistivities. Clay minerals generally tend to decrease resistivity because the clay minerals can adsorb cations in an exchangeable state on their surfaces, and/or desorb and contribute to the supply of free ions in the soil electrolyte. For details of this and interpretation, Telford (1990), Sharma (1986), and Ward (1990) should be consulted.

VES data using the Schlumberger array were collected on October 19, 1994 (Table 1) (Figure 5). The AB/2 (AB is the current electrode separation) spacing was systematically increased from 1.0 to 46.41 meters (3.3 to 152.3 ft), with a MN (MN is the potential electrode separation) spacing ranging from 0.3 to 3.0 meters (1.0 to 9.8 ft). Calculations to obtain apparent resistivity \(\rho_a \) are made using the standard expression,

\[
\rho_a = \pi \frac{(AM \times MN)}{MN} \frac{V}{I} = \frac{KV}{I}
\]
where V is the drop in potential, I is the measured current, and k is the conductivity. This accounts for array geometry (Sharma, 1986) based on the difference in readings taken as the MN distance is increased.

Table 1
VES Data, Calculations, and Corrections

<table>
<thead>
<tr>
<th>AB/2 (meters)</th>
<th>MN (meters)</th>
<th>K (meters)</th>
<th>V/I (Ω)</th>
<th>$\rho_x-\Omega$ (ohm-m)</th>
<th>Corrected $\rho_x-\Omega$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.3</td>
<td>10.2</td>
<td>380/10</td>
<td>387.6</td>
<td>430.24</td>
</tr>
<tr>
<td>1.47</td>
<td>0.3</td>
<td>22.4</td>
<td>186/10</td>
<td>416.64</td>
<td>462.47</td>
</tr>
<tr>
<td>2.15</td>
<td>0.3</td>
<td>48.2</td>
<td>77/10</td>
<td>371.14</td>
<td>411.97</td>
</tr>
<tr>
<td>3.16</td>
<td>0.3</td>
<td>104</td>
<td>140/10</td>
<td>291.2</td>
<td>Skip</td>
</tr>
<tr>
<td>3.16</td>
<td>1.0</td>
<td>30.57</td>
<td>529/50</td>
<td>323.43</td>
<td>323.43</td>
</tr>
<tr>
<td>4.64</td>
<td>1.0</td>
<td>66.9</td>
<td>171/50</td>
<td>228.79</td>
<td>228.79</td>
</tr>
<tr>
<td>6.81</td>
<td>1.0</td>
<td>145</td>
<td>53.4/50</td>
<td>154.86</td>
<td>154.86</td>
</tr>
<tr>
<td>10.0</td>
<td>1.0</td>
<td>313</td>
<td>16.04/50</td>
<td>100.41</td>
<td>100.41</td>
</tr>
<tr>
<td>14.67</td>
<td>1.0</td>
<td>675</td>
<td>11.1/50</td>
<td>74.925</td>
<td>74.925</td>
</tr>
<tr>
<td>14.67</td>
<td>3.0</td>
<td>223</td>
<td>41.7/100</td>
<td>92.99</td>
<td>Skip</td>
</tr>
<tr>
<td>21.54</td>
<td>3.0</td>
<td>484</td>
<td>15.9/100</td>
<td>76.96</td>
<td>62.34</td>
</tr>
<tr>
<td>31.62</td>
<td>3.0</td>
<td>1045</td>
<td>6.73/100</td>
<td>66.15</td>
<td>53.81</td>
</tr>
<tr>
<td>46.41</td>
<td>3.0</td>
<td>2253</td>
<td>2.74/100</td>
<td>61.73</td>
<td>50.0</td>
</tr>
</tbody>
</table>

Segments of the curve made from different MN separation were adjusted up or down to match the next segment resulting in a smooth VES curve for interpretation.

The Schlumberger VES inversion program (SCHLINV) used a five-layer earth for interpretation (Figure 15). The model fits the field data with a RMS error of 1.124 percent. The constraints put on the model came from well borings from well nest B (Figure 5). The depths 0.22 (0.72 ft), 0.96 (3.15 ft), 3.38 (11.10 ft) and 12.01 (39.4 ft) meters match favorably with these logs (Appendix A).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Figure 15. Schlumberger VES Data and Model Results.

<table>
<thead>
<tr>
<th>Layer</th>
<th>Resistivity (rho)</th>
<th>Depth (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>224</td>
<td>0.22</td>
</tr>
<tr>
<td>2</td>
<td>766</td>
<td>0.96</td>
</tr>
<tr>
<td>3</td>
<td>201</td>
<td>3.28</td>
</tr>
<tr>
<td>4</td>
<td>67</td>
<td>12.01</td>
</tr>
<tr>
<td>5</td>
<td>46</td>
<td></td>
</tr>
</tbody>
</table>
The water table in the area ranges in depth from 0.78 to 1.52 meters (3.0 to 5.0 ft), which fits the second layer of the model. The first layer correlates with the topsoil or disturbed surficial material. The layer below the water table in the model is thought to represent a layer of sand and gravel with some clay lenses. Lying under this layer is the semi-confining clay layer that was reported in both the drilling logs and sample borings. The last layer in the model is the coarse sand and gravel unit that forms the aquifer in which the City of Parchment obtains its water.
CHAPTER IV

HYDROLOGY

Climate, Groundwater Flow, Surface Water and Water Budget

The main surface water features in the study area are the Kalamazoo River, which flows north and Spring Brook, which enters the Kalamazoo River from the east (Figure 4). Within the study area, the water table is typically within a few meters [1.0 to 3.0 m (3.28 to 9.84 ft)] of the surface. In Kalamazoo County, with an average rainfall of 86.4 cm (34 in) per year, approximately 27% of the total precipitation infiltrates the ground and as much as 70% is lost to evaporation and transpiration. The remaining 3% is taken in by plants and direct runoff out of the watershed. An understanding of the hydrologic parameters and the interaction of the climate to the surface water and groundwater are important to watershed/water budget studies.

Climate

Kalamazoo County, Michigan, is located in the lower southwest climatic division of the state, about 56 km (35 mi.) north of the Indiana border and about 56 km (35 mi.) east of Lake Michigan. Kalamazoo County is also located in the “Lake Effect Snow Belt”. This “Lake Effect” is caused by three fundamental differences between the land surface and Lake Michigan. First, the lake temperatures “lag”
behind the land temperatures with large differences occurring at certain times of the year; second, the lake increases the availability of moisture to be evaporated into the air during the cold season; and third, the surface of the lake is smoother than the land (Eichenlaub, 1990). The lake effect on Kalamazoo’s climate is quite strong. The prevailing winds in the county are southwesterly, averaging 16 kph (10 mph). These southwest winds cross Lake Michigan producing the lake effect which increases cloudiness and snowfall during the fall and winter, and moderates the temperature throughout most of the year. Northeasterly to southerly winds may produce clearing skies with the associated colder temperatures more common to areas to the far east of the county (Nurnberger, 1994). The temperature lag affects the Kalamazoo area by producing milder falls and cooler springs.

Summers in Kalamazoo County are dominated by moderately warm temperatures with a 1951 to 1980 average of eighteen days per year exceeding 32°C (90°F). During the same period, seven days in three different years had maximum daily temperatures of 37.8°C (100°F) or higher. The lake influence was reflected in the minimum temperatures. An average of 136 days per year experienced minimum daily temperatures of 0°C (32°F) or lower and an average of six days per year had maximum temperatures of −17.8°C (0°F). Only two years were entirely above −17.8°C (0°F). The following temperature extremes have been recorded for southwest Michigan: (a) maximum, 42.8°C (109°F), recorded July 13, 1936; (b) minimum, −31.7°C (−25°F), recorded February 10, 1885; (c) warmest monthly mean, 25.7°C.
(78.2°F), recorded July 1955; (d) and coldest monthly mean, -10.4°C (13.3°F), recorded January 1977 (Nurnberger, 1994).

Based on the 1951 to 1980 period, the average date of the last freezing temperature in the spring was May 1, while the average date of the first freezing temperature in the fall was October 13. The freeze-free period, or growing season, averaged 164 days annually.

Precipitation is well distributed throughout the year with April-September receiving an average of 52 centimeters (cm) [20.47 inches (in)] for the 1951-80 period (59% of the average annual precipitation). During this same period the average wettest month was June with 9.8 cm (3.83 in), while the average driest month was February with 4.24 cm (1.67 in). Summer precipitation comes mainly in the form of afternoon showers and thundershowers. Annually, thunderstorms will occur on an average of 36 days. Precipitation that owes its origin to Lake Michigan during the winter is 15 to 20% of the total precipitation and 8 to 12% in the summer (Machavaram, 1993).

Michigan is located on the northeast fringe of the Midwest tornado belt. The lower frequency of tornadoes occurring in Michigan may be, in part, the result of the colder water of Lake Michigan during the spring and early summer months, a prime period of tornado activity. During 1950 to 1987, Michigan averaged 15 tornadoes a year. During this same period, only 17 tornadoes occurred within Kalamazoo County.
The 1950 to 1951 through 1979 to 1980 average yearly snowfalls were 186.9 cm (73.6 in). During this period, 71 days per season averaged 2.54 cm (1 in) or more of snow on the ground, but varied greatly from year to year. The following snowfall extremes, based on the time period of record (Nurnberger, 1994), are: (a) greatest observation-day total, 45.7 cm (18.0 in), recorded January 26, 1978; (b) greatest monthly total, 139.7 cm (55.0 in), recorded December, 1903; (c) greatest seasonal total, 307.85 cm (121.2 in), recorded during 1903 to 1904; (d) least seasonal total, 38.1 cm (15.0 in), recorded during 1901 to 1902; and (e) greatest snow depth 106.7 cm (42 in), recorded February 9, 1905.

Evaporation data from a Class “A” pan [a device used to measure free-water evaporation (Fetter, 1994)] was not available for the Kellogg Biological Station, but data for this area should be similar to observations at South Haven, Michigan, which is approximately 50 km west of the City of Kalamazoo. During 1952 to 1980, the pan evaporation in South Haven, for April through October exceeded the average precipitation by 58%. Therefore, soil moisture replenishment during the fall and winter months plays an important role in the success of agriculture for this area. While drought occurs periodically, the Palmer Drought Index (Nurnberger, 1994) indicated drought conditions reached extreme severity only 1% of the time.

Aquifer Tests

Aquifer tests have been conducted on the Kalamazoo River aquifer since the mid-1950’s by both the City of Parchment and the Brown Company. These tests are
important in determining the groundwater interaction with adjacent surface water bodies. The derived data from these tests also help to determine the various aquifer parameters such as hydraulic conductivity, transmissivity and storage coefficients.

In 1950, the Kalamazoo River aquifer was developed for industrial and municipal use. At that time an aquifer performance test was run. A transmissivity value of 240,000 gallons per day per foot, with a storage coefficient of 1.8×10^{-4} was calculated (Williams & Works, 1980). Using information generated by the aquifer test they determined that the aquifer would yield 5,000 gallons per minute (gpm) or 7.2 million gallons per day (mgd) because of the high transmissivity and good recharge from the river. Moreover, they determined that this could be done with only two to three feet of drawdown in the 35-acre wellfield area (JRPC property, south of the study area) adjacent to the river. Drawdown in the wells maintained by JRPC has been known to approach the bottom of the aquiclude (Williams & Works, 1980). However, they suggest that most of this is due to well losses.

The City of Parchment began pumping Wells #1 and #2 of the subject wellfield in 1963. Well #3 came online ten years later in 1973. The wells range in depth from 15.7 to 17.7 meters (51.5 to 58 ft). The wells have specific capacities ranging from 32.1 gpm to 244 gpm. Each well was designed to operate in the range of 600 to 1000 gpm (Table 2).

Since 1987, daily pumping rates have ranged from a low of 0.115 million gallons a day (mgd) in 1989 to a high of 2.222 mgd in 1991. Average daily pumping
rates have ranged from 0.394 mgd in 1993 to 0.518 mgd in 1994 (Jones, 1992) (Table 3).

Table 2

Well Diameter and Specific Capacities (Jones, 1992)

<table>
<thead>
<tr>
<th>Location</th>
<th>Rated Capacity (gpm)</th>
<th>Diameter (in)</th>
<th>Depth (ft)</th>
<th>Screen (ft)</th>
<th>Drilled (year)</th>
<th>Static Depth (ft)</th>
<th>Specific Capacity (gpm/ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well #1</td>
<td>600</td>
<td>38 x 34 x 12</td>
<td>51.5</td>
<td>15</td>
<td>1963</td>
<td>8</td>
<td>32.1</td>
</tr>
<tr>
<td>Well #2</td>
<td>1000</td>
<td>38 x 34 x 12</td>
<td>58</td>
<td>15</td>
<td>1963</td>
<td>8</td>
<td>140</td>
</tr>
<tr>
<td>Well #3</td>
<td>1000</td>
<td>42 x 34 x 12</td>
<td>58</td>
<td>15</td>
<td>1973</td>
<td>10</td>
<td>244</td>
</tr>
</tbody>
</table>

Table 3

Water Usage for the City of Parchment Wellfield (1986-1996) (Jones, 1992)

<table>
<thead>
<tr>
<th>Year</th>
<th>Average Daily (mgd)</th>
<th>Maximum Daily (mgd)</th>
<th>Minimum Daily (mgd)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1987</td>
<td>0.457</td>
<td>1.614</td>
<td>0.161</td>
</tr>
<tr>
<td>1988</td>
<td>0.503</td>
<td>1.716</td>
<td>0.147</td>
</tr>
<tr>
<td>1989</td>
<td>0.456</td>
<td>1.077</td>
<td>0.115</td>
</tr>
<tr>
<td>1990</td>
<td>0.434</td>
<td>1.476</td>
<td>0.200</td>
</tr>
<tr>
<td>1991</td>
<td>0.438</td>
<td>2.222</td>
<td>0.135</td>
</tr>
<tr>
<td>1992</td>
<td>0.413</td>
<td>1.276</td>
<td>0.237</td>
</tr>
<tr>
<td>1993</td>
<td>0.394</td>
<td>0.746</td>
<td>0.187</td>
</tr>
<tr>
<td>1994</td>
<td>0.518</td>
<td>1.264</td>
<td>0.318</td>
</tr>
<tr>
<td>1995</td>
<td>0.499</td>
<td>1.304</td>
<td>0.115</td>
</tr>
<tr>
<td>1996</td>
<td>0.515</td>
<td>1.484</td>
<td>0.168</td>
</tr>
</tbody>
</table>

Water-level information from the monitoring and production wells were contoured and compared to the United States Geological Survey (USGS) water table...
map of August 1988 (Allen and others, 1972). The shape of the water table thus
generated was found to be comparable to that reported by Rheaume (1988) and
showed groundwater movement to be in a northwesterly direction along the
Kalamazoo River (Figure 16). Jones (1992) used well logs (Appendix A) supplied by
the Kalamazoo County Human Services Department to develop a water table map
that corresponds fairly closely with that of Rheaume (1988).

The Well Head Protection Report (Jones, 1992) includes information on a 24-
hour pump test conducted by Peerless-Midwest in December 1991. The tests for
these wells gave transmissivities from 15,898 ft^2/day to 20,232 ft^2/day and hydraulic
conductivities from 361 ft/day to 460 ft/day (Table 4). The following averages were
calculated from the pumping results: (a) the transmissivity equals 17,915 ft^2/day
(134,004 gpd/ft); (b) the hydraulic conductivity is 407 ft/day (3044 gpd/ft^2); and (c)
the storativity is 3.72 x 10^-4. These averages are very similar to most producing
aquifers within Kalamazoo County. As noted by Jones (1992), the results are
reasonably close for each of the wells. It was not possible to determine the storativity
of Well #1, because the effective radius of the pumping well is unknown.

The difference between the results of the pumping phase of the test and the
recovery phase is likely due to the pumping of Well #3 during the recovery period.
Another possible problem was that Well #3 was pumped until the start of the
pumping test in Well #1. This would have caused problems with the early time data
in Wells #2 and #3. The well recovery data were analyzed using the Cooper-Jacob
Figure 16. Groundwater Flow Map. Modified from Jones, 1986.
straight-line method and yielded transmissivities from 28,840 to 36,363 ft²/day and hydraulic conductivities of 655 to 826 ft/day (Table 5).

Table 4
Hydraulic Parameters, Well #1 Pumping Test, Parchment, Michigan
(Jones, 1992)

<table>
<thead>
<tr>
<th>Well ID</th>
<th>Transmissivity (ft²/day)</th>
<th>Hydraulic Conductivity (ft/day)</th>
<th>Storativity (dimensionless)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well #1</td>
<td>15,898</td>
<td>361</td>
<td>N/A</td>
</tr>
<tr>
<td>TW</td>
<td>20,232</td>
<td>460</td>
<td>4.42 x 10⁻⁴</td>
</tr>
<tr>
<td>Well #2</td>
<td>18,855</td>
<td>429</td>
<td>3.54 x 10⁻⁴</td>
</tr>
<tr>
<td>Well #3</td>
<td>16,675</td>
<td>379</td>
<td>3.21 x 10⁻⁴</td>
</tr>
<tr>
<td>Average</td>
<td>17,915</td>
<td>407</td>
<td>3.72 x 10⁻⁴</td>
</tr>
</tbody>
</table>

Table 5
Hydraulic Parameters, Well #1 Recovery, Parchment, Michigan
(Jones, 1992)

<table>
<thead>
<tr>
<th>Well ID</th>
<th>Transmissivity (ft²/day)</th>
<th>Hydraulic Conductivity (ft/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TW</td>
<td>29,346</td>
<td>667</td>
</tr>
<tr>
<td>Well #2</td>
<td>28,840</td>
<td>655</td>
</tr>
<tr>
<td>Well #3</td>
<td>36,363</td>
<td>826</td>
</tr>
<tr>
<td>Average</td>
<td>31,516</td>
<td>716</td>
</tr>
</tbody>
</table>

Interpretation of Aquifer Test Results

Jones (1992) discussed the results of the test and the presence of clay in the well logs of Wells #1, #2, and #3 (Appendix A). The well logs report a clay or gravel and clay-confining layer. This clay layer is also present in the well logs of well nests B and C constructed for this study (Figure 10). The presence of this clay layer
throughout the area of the wellfield suggests that a continuous clay layer is present; but conflicts with the drawdown curves for the pump test indicate that unconfined conditions exist. This suggests that the clay layer is not continuous or it may be that the aquifer is being recharged from some other source.

The pump test data showed some delayed yield which suggests that unconfined conditions exist, but the storativity of 3.72×10^{-4} is indicative of a confined aquifer. Typically storativity of confined aquifers is less than 0.005 (Fetter, 1994). The 1950 pump test data generated values for a storage coefficient of 1.8×10^{-4} (Williams & Works, 1980). They suggest that the low storage coefficient was evidence for a true aquiclude being present over the lower aquifer unit. They further state that under "non-pumping" conditions, an upward pressure gradient exists across the aquiclude which means that any leakage through the unit is upward from the lower aquifer rather than downward into it (Williams & Works, 1980). The combined pumping of JRPC and the City of Parchment most likely causes a reversal in the hydraulic gradient within the study area.

Jones' (1992) report on the barrier effect of the river indicates that the confining layer does not extend to the river. Cross-section A-A', (Figure 11) shows a continuous clay layer, but the GPR line reveals possible discontinuous sections along the transect A-A', as explained in the previous chapter.

Southwest Michigan aquifers have transmissivities ranging from 2,000 to 300,000 gpd/ft (Table 6). Specific capacities for the same aquifers range from lows of less than 1 to a high of 650 gpm/ft. The City of Parchment Wellfield data falls
well within these ranges of aquifer parameters. The Coldwater formation, which underlies the City of Parchment Wellfield, has a very low specific capacity with a transmissivity of 26,700 gpd/ft, which is good enough for private potable wells but not for municipal production (Passero and Straw, 1988). This prohibits the City of Parchment from deepening the wells in order to further protect the wellfield from potential contamination.

In 1951 and 1952, the Brown Company installed six high-capacity, 12-inch diameter, water supply wells south of the City of Parchment Wellfield. When these wells were pumped they influenced the water levels in the shallow aquifer in nearby monitoring wells, thus providing evidence of hydraulic conductivity through the aquiclude (Williams & Works, 1980). From this it is concluded, based on the aquifer performance data, that the aquifers are interconnected and that the clay-rich layers from an aquitard not an aquiclude.

Table 6
Productivity of Glacial Drift and Bedrock Aquifers (Passero and Straw, 1988)

<table>
<thead>
<tr>
<th>Aquifer</th>
<th>Well Capacity (gpm)</th>
<th>Specific Capacity (gpm/ft)</th>
<th>Transmissivity (gpd/ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glacial Drift</td>
<td><5-2,850</td>
<td><1-550</td>
<td>3,000-300,000</td>
</tr>
<tr>
<td>Coldwater Formation</td>
<td>25-975</td>
<td>1-54</td>
<td>26,700</td>
</tr>
</tbody>
</table>

Groundwater Flow

Groundwater levels in Kalamazoo County reflect short- and long-term changes in precipitation and local pumpage. Groundwater levels increase in the late
winter and early spring in response to the infiltration from snowmelt and rain during
the early part of the growing season when evapotranspiration is very low. According
to Rheaume (1990), water levels in Kalamazoo County only fluctuate from 0.6 to 0.9
meters (2 to 3 ft), even during extended dry and wet periods. Generally, the
configuration of the water table shows that groundwater moves from topographic
high areas to topographic low discharge areas such as ponds, streams, and wetlands
(Rheaume, 1990; Fetter, 1994). On the east side of the Kalamazoo River near the
City of Parchment Wellfield, the slope of the water table indicates that flow in the
upper aquifer is toward the river. Rheaume (1990) constructed a hydrograph
separation of data collected at the Comstock, Michigan gauging station and calculated
groundwater discharge rates for the Kalamazoo River of 12.1% or 8.79 in/year, thus
demonstrating that the river is a discharge river. Allen confirms this in his report of
1972. Near the river, the water table is controlled by the river’s stage (Williams &
Works, 1980). The water table is nearly flat in the study area and follows the
subdued topography of the site (Figure 16).

In the lower (production) aquifer, based on the hydrogeology of the area and
the hydraulic communication with the river seen in the pump test data, it seems likely
that under normal and low river flow, the aquifer discharges to the river, as Rheaume
(1990) and Allen (1986) suggest. As the river stage rises, recharge to the aquifer
form the river begins (Williams & Works, 1980). The gradient direction probably
swings northward close to the river and with an upward component when discharging
to the river (Freeze and Cherry, 1979). Under the influence of this gradient, the upper and lower aquifers combine to support the baseflow of the river.

Natural groundwater velocity can be calculated by rearranging Darcy’s Law, Discharge (Q) equals hydraulic conductivity (K) times the gradient (dh/dl) to

\[
 \text{Velocity} (V) = K \left(\frac{dh}{dl} \right)
\]

Using the average hydraulic conductivity of 407 ft/day along with a gradient of (20 ft/850 ft), based on distance from the river to the wellfield and the drawdown in the wells the time frame needed for water to move from the river to the wellfield can be calculated. Using the calculated velocity of 9.6 ft/day it would take water from the river 3.2 months to reach the wellfield. This is based on the river being 850 feet from the wellfield. The time can be cut down considerably during flooding events in which the water is damned by the old railroad tracks 200 feet from the wellfield (.74 months).

With the combined pumping of the JRPC and the City of Parchment, the groundwater gradient may show some local perturbations. However, pumping probably has only a small effect on the overall flow patterns of water in the aquifer.

Surface Water

Surface water bodies of importance to the study include the Kalamazoo River, Spring Brook, and several small ponds and wetlands near the site (Figure 5). The Kalamazoo River is the main drainage system for the county, draining 54 percent of the county. Spring Brook, near East Cooper, has a drainage area of 80.6 square
kilometers (31.1 square miles) and an average discharge of 0.5 m3/sec [17 cubic feet per second (cfs)] (Passero and others, 1978) (Table 7).

Table 7

Gaging Station Locations, Drainage Area and Average Discharge of Streams Near the Study Area (Allen and others, 1972; Passero and others, 1978)

<table>
<thead>
<tr>
<th>Stations</th>
<th>Location</th>
<th>Drainage Area (mi2)</th>
<th>Average Discharge (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1060.00</td>
<td>Kalamazoo River at Comstock</td>
<td>1010</td>
<td>794</td>
</tr>
<tr>
<td>1067.30</td>
<td>Spring Brook at CD Avenue</td>
<td>22.4</td>
<td>Not known</td>
</tr>
<tr>
<td>1067.50</td>
<td>Spring Brook near East Cooper</td>
<td>31.1</td>
<td>17</td>
</tr>
<tr>
<td>1067.70</td>
<td>Kalamazoo River near Cooper Center</td>
<td>1250</td>
<td>Not known</td>
</tr>
</tbody>
</table>

Natural discharge from the groundwater system is by seepage to springs, streams and some lakes, and to a lesser extent by evapotranspiration from the water table. During dry periods, the base flow of streams is almost entirely maintained by groundwater inflow. During wet periods, stored runoff in lakes and marshes help recharge the aquifers. Some streams lose water in areas where pumping has lowered water levels thereby allowing additional induced recharge into the aquifers (Allen and others, 1972; Rheumne, 1990). With the combined long-term pumping of both the City of Parchment (500,000 gpd) and the JRPC (2,360,000 gpd), the possibility of induced recharge from the Kalamazoo River exists.

Ten significant dam structures exist in the study area including eight dams or dam spillways on the Kalamazoo River and one each on Portage and Pine Creeks.
Two existing dams create significant impoundments on the Kalamazoo River. One is located at the upstream end of the study area near Comstock, (Morrow Dam-mile 69.5) which forms Morrow Pond, and the second in the downstream portion of the reach which forms Lake Allegan (Allegan Hydro Dam or Calkins Dam-mile 21.0).

On the Kalamazoo River, there are several simple overflow dams that create backwater at low flows to control water supply depths or partially direct river flow through parallel side channels around islands. These overflow dams are located just upstream of Plainwell (Plainwell Diversion Dam-mile 51.3), in Otsego (Otsego City Dam-mile 46.1), and in Allegan (Allegan Diversion Dam-mile 28.5). Kalamazoo River water also flows through the spillways of three inactive hydropower dams with flow gates removed and minimal backwater effects located below Plainwell (Plainwell Hydro Dam-mile 48.0), Otsego (Otsego Hydro Dam-mile 42.8), and between Otsego and Allegan (Trowbridge Dam-mile 38.9) (Figure 2). The future of these structures is uncertain because of conflicting proposals to remove them for fish passage, aesthetics, and PCB concerns.

River Hydrographs (Historical)

Most floods occur in the spring as a result of snowmelt and spring rains in combination with frozen or saturated soils (Allen and others, 1972). The 100-year flood elevation for the site reports an elevation ranging from 229.5 to 230.3 m (753 to 755.5 ft) (USGS datum) (Williams & Works, 1980). The area below this datum is referred to as the 100-year floodplain (Figure 17). As seen in Figure 17 the City of
Figure 17. FEMA Map Displaying in the Shaded Area the 100 Year Flood Plain.
Parchment wellfield is protected by the abandoned railroad and Consumers Power road from river flooding.

Water Budget

Analysis of general water budgets can yield insight to the hydrologic system at work within a specific site. Water budgets take into consideration various parameters, some known and some not. These parameters include soil characteristics, weather (precipitation and temperature), surface waters and groundwater flow and infiltration. To calculate a budget for the study site it is necessary to combine past region-wide water budgets with known site-specific parameters.

The average rainfall in Kalamazoo County as reported at the Kalamazoo-Battle Creek International Airport is 86.4 cm (34 in) per year. The range of precipitation is from a low of 53.3 cm (21 in) to a high of 106.7 cm (42 in). Evaporation ranges from a low of 61 cm (24 in) to a high of 73.7 cm (29 in). This is approximately 70 to 85 percent of the total precipitation. The range of surface runoff (depending on soil type and slope) is 2.54 to 7.62 cm (1 to 3 in) or 3 to 8 percent of the total precipitation. Of the remaining precipitation, 5 to 22.9 cm (2 to 9 in) or 7 to 27 percent infiltrates into the ground. The countywide average groundwater recharge rate is estimated to be 23.67 cm (9.32 in) per year (Passero, 1978; Rheaume, 1990). Hydrograph separations done by Allen and others (1972) suggest that 65 to 73% of the total flow in the Kalamazoo River consists of groundwater discharge. Previous water budgets have focused on a countywide scale (Allen and others, 1972; Passero,
1989; Rheum, 1990). Passero (1989) estimated that an average of 55 mgd or an amount equal to approximately 22% of the total infiltrated water is pumped in Kalamazoo Township (Table 8).

Table 8

Kalamazoo County Water Budget Calculations (Passero, 1989)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range of Parameter (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precipitation</td>
<td>34" (Ave.) 21"-42" (Range)</td>
</tr>
<tr>
<td>Evaporation</td>
<td>24"-29" (70-85%)</td>
</tr>
<tr>
<td>Surface Runoff</td>
<td>1"-3" (3-8%)</td>
</tr>
<tr>
<td>Infiltration</td>
<td>2"-9" (7-27%)</td>
</tr>
</tbody>
</table>

A water budget for the study area was calculated using a water budget equation (Figure 18) adapted from Fetter (1994). Assuming that there is no change in storage within the study area, then the only input of concern is precipitation. Because of the small scale of the water budget study, the river inflow is assumed to be equal to the river outflow. Due to the flat terrain and onsite observations during and following heavy rains, it can be assumed that no overland flow is coming into or leaving the

\[
\text{Inflow} = \text{Outflow} \pm \text{Changes in Storage}
\]

Inflow: Precipitation, river inflow

Outflow: Evaporation, surface runoff, infiltration, river outflow

Figure 18. Water Budget Equations.
study area, except for the Kalamazoo River. Water budget values for the study site were calculated based on onsite observations and field measurements (Table 9).

Table 9

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Calculated Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precipitation</td>
<td>86.36 cm (34 in)</td>
</tr>
<tr>
<td>Evaporation</td>
<td>73.66 cm (29 in)</td>
</tr>
<tr>
<td>Surface Runoff</td>
<td>2.54 cm (1 in)</td>
</tr>
<tr>
<td>Infiltration</td>
<td>10.16 cm (4 in)</td>
</tr>
</tbody>
</table>

Precipitation was taken as the average for the area which is 86.36 cm (34 in) a year. The National Council for Air and Stream Improvement (NCASI) maintained a weather station on the James River Paper Company landfill for several years preceding this study and found this to be a good average (Personal communication). Evaporation, which accounts for the greatest loss of water in the system, is hard to calculate. However, combining evaporation with the transpiration, 73.66 cm (29 in) a year becomes a good estimate for the site. Within the study area vegetation is plentiful. Trees line the river on both sides with an absence of trees only under the power lines and within the City of Parchment Wellfield.

The Glendora (Gn) soil is the predominate soil within the study area. It typically has a slope of 0 to 2 percent and resides along perennial rivers and streams. Surface water runoff is very slow and permeability is rapid. Recorded permeabilities are in the range of 5.08 to 50.80 cm (2.0 to 20.0 in) per hour (Austin, 1979). This
provides the justification for using such a low surface runoff of 2.54 cm (1 in) and a high infiltration value of 10.16 cm (4 in).

Using an average discharge from the wellfield (170 million gallons per year) along with the saturated thickness of 100 feet and a porosity of 0.2, we can calculate the area of influence of the wellfield. Based on the equation of radius of influence equaling discharge (Q) divided by effective porosity (n_e) times saturated thickness (h), 2π and the natural velocity (v). This will give a capture zone of 3.6 miles over the course of one year. This capture zone is based upon no recharge from precipitation or groundwater.

The proposed adjustment to the region-wide water budget is significant in that it allows for a more detailed analysis of the hydrogeologic system at work. Given the low slope and high permeabilities of the soils within the study area in association with the wellfield pumping, the possible necessary recharge of water form the river becomes less. However, if the clay-rich confining layer is continuous throughout then this infiltration of precipitation will ultimately filter towards the river and not recharge the producing aquifer. Based on this water budget and the pumping rates of both the City of Parchment and JRPC it is apparent that the wellfields receive water from more sources than just regional groundwater.
CHAPTER V

GROUNDWATER-SURFACE WATER INTERACTION

Seepage Meters and Analysis

Determining the groundwater interaction with the surface waters of the Kalamazoo River is important because of the effect interaction may have on the City of Parchment wellfield. Seepage meters were used to study the interaction of the Kalamazoo River and the upper aquifer adjacent to the river.

Seepage Meters

Modified seepage meters were used to determine the recharge and discharge fluxes across the Kalamazoo River bottom. Seepage meters are devices made from barrels and beach balls (Figure 19) which are placed into the nearshore of a water body in order to define the amount and rate of movement of water across the bottom interface. The seepage meters were installed in shallow water along the Eastern Shore of the Kalamazoo River (Figure 20) in conjunction with a monitoring piezometer and stilling well. The combination of these devices permitted the determination of the groundwater flux across the river bottom and adjacent unconfined aquifer.
Figure 19. Seepage Meter Design.

Figure 20. Layout of Seepage Meters, Stilling Well and Piezometer.
The seepage meters were constructed in a modified form from descriptions in Lee (1977) and Lee and Cherry (1978). The seepage meters were constructed by cutting 45.72 cm (18 in) long end sections from a single 55 gallon metal barrel and attaching a deflated beach ball to the top of the divided drum as shown in Figure 19. Water was placed into the beach balls prior to their connection to the seepage meters because results are more consistent if they are pre-charged. The seepage meters were installed by placing them into the bottom sediment below the existing water level by twisting and pushing them into the soft bottom sediments until complete resistance was attained. This commonly establishes the necessary “seal” within the bottom sediments.

Before the seepage meters are set for measurements, they are bled of all air pockets to minimize the trapped air within the meters. The presence of trapped air can be a potential problem with final measurements, due to the compressibility of air.

The seepage flux was calculated using equations presented in Figure 21. The net volume of change refers to the measured amount of water in the beach ball at the time of each reading minus the amount of water that was put into the beach ball at the beginning of each trial. Before each time trial 2 or 3 liters of river water were placed into the deflated beach ball. At the end of each time trial, the water in the beach ball was measured using a funnel and plastic five-liter graduated cylinder.

Sixteen time trials were conducted during two time periods (Table 10). The first time period (K1) was from September 24, 1994, at 2:55 P.M. through October 4, 1994 at 11:28 am (234.59 total hours). The second time period (K2) was from
Net volume of change (cm³) = \([\text{volume out (L)} - \text{volume in (L)}] \times 1000 \)

A positive change means groundwater discharge.
A negative change means groundwater recharge.

\[
\text{Seepage Flux (x 10}^{-2} \text{ cm/hr)} = 100 \times (\text{net volume change} / 2535 \text{ cm}^2) / \text{trial time in hours.}
\]

The 2535 cm² is the contact area of the seepage meter with the bottom sediments.

Figure 21. Seepage Meter Equations.

August 24, 1995, at 12:20 P.M. through September 25, 1995, at 4:13 P.M. (747.03 total hours). Table 10 shows the fluxes for the individual seepage meters for each time trial over each trial period. The flux numbers refer to the individual seepage meters as they are oriented in Figure 20. A comparative graph of each sampling period (Figure 22 and 23) shows the variability in the seepage meters with time as discussed below.

Seepage Meter Analysis

The first analytical step was to determine fluxes for the individual time trials. This was accomplished using the equations given in Figure 21. The calculated fluxes for the individual events are listed in Table 10. Column one is the "event" identification. The second column is the trial time, which refers to the duration between collection periods. The third column refers to the accumulated time for the entire sampling
Table 10
Results of Seepage Meter Trials

<table>
<thead>
<tr>
<th>Trial</th>
<th>Time (hr)</th>
<th>Cum. Time (hr)</th>
<th>Flux 1 (x 10^{-2} cm/hr)</th>
<th>Flux 2 (x 10^{-2} cm/hr)</th>
<th>Flux 3 (x 10^{-2} cm/hr)</th>
<th>Flux 4 (x 10^{-2} cm/hr)</th>
<th>Flux 5 (x 10^{-2} cm/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K1 1</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2.56</td>
<td>1.38</td>
<td>5.32</td>
<td>16.76</td>
</tr>
<tr>
<td>K1 2</td>
<td>19.83</td>
<td>20.83</td>
<td>-0.12</td>
<td>0.18</td>
<td>0.96</td>
<td>1.94</td>
<td>0.64</td>
</tr>
<tr>
<td>K1 3</td>
<td>22.16</td>
<td>42.99</td>
<td>-0.21</td>
<td>0.14</td>
<td>1.76</td>
<td>0.94</td>
<td>1.97</td>
</tr>
<tr>
<td>K1 4</td>
<td>26.58</td>
<td>69.57</td>
<td>0.32</td>
<td>1.72</td>
<td>1.27</td>
<td>1.45</td>
<td>2.46</td>
</tr>
<tr>
<td>K1 5</td>
<td>28.02</td>
<td>97.59</td>
<td>0.94</td>
<td>2.08</td>
<td>1.68</td>
<td>1.05</td>
<td>1.83</td>
</tr>
<tr>
<td>K1 6</td>
<td>19.85</td>
<td>117.44</td>
<td>2.52</td>
<td>4.02</td>
<td>1.88</td>
<td>3.12</td>
<td>6.65</td>
</tr>
<tr>
<td>K1 7</td>
<td>24.53</td>
<td>141.97</td>
<td>0.41</td>
<td>2.55</td>
<td>0.57</td>
<td>0.69</td>
<td>3.20</td>
</tr>
<tr>
<td>K1 8</td>
<td>24.37</td>
<td>166.34</td>
<td>0.71</td>
<td>1.55</td>
<td>0.27</td>
<td>0.71</td>
<td>4.56</td>
</tr>
<tr>
<td>K1 9</td>
<td>68.25</td>
<td>234.59</td>
<td>0.04</td>
<td>0.57</td>
<td>0.31</td>
<td>0.20</td>
<td>1.47</td>
</tr>
<tr>
<td>K2 1</td>
<td>47.95</td>
<td>47.95</td>
<td>0.65</td>
<td>0.45</td>
<td>0.32</td>
<td>4.11</td>
<td>1.52</td>
</tr>
<tr>
<td>K2 2</td>
<td>47.47</td>
<td>95.42</td>
<td>2.45</td>
<td>0.66</td>
<td>0.41</td>
<td>1.12</td>
<td>1.28</td>
</tr>
<tr>
<td>K2 3</td>
<td>97.08</td>
<td>192.5</td>
<td>0.54</td>
<td>1.13</td>
<td>1.27</td>
<td>0.50</td>
<td>1.46</td>
</tr>
<tr>
<td>K2 4</td>
<td>193.25</td>
<td>385.75</td>
<td>0.44</td>
<td>0.61</td>
<td>0.35</td>
<td>0.12</td>
<td>0.51</td>
</tr>
<tr>
<td>K2 5</td>
<td>45.3</td>
<td>431.05</td>
<td>3.48</td>
<td>1.56</td>
<td>1.56</td>
<td>0.34</td>
<td>3.91</td>
</tr>
<tr>
<td>K2 6</td>
<td>166.78</td>
<td>597.83</td>
<td>0.49</td>
<td>0.92</td>
<td>0.70</td>
<td>0.43</td>
<td>0.54</td>
</tr>
<tr>
<td>K2 7</td>
<td>149.2</td>
<td>747.03</td>
<td>1.13</td>
<td>1.18</td>
<td>0.66</td>
<td>0.56</td>
<td>1.00</td>
</tr>
</tbody>
</table>

period, which is needed to calculate the flux over time. The final five columns are the calculated flux (x 10^{-2} cm/hr) of the individual seepage meters (one through five) for the given time period. A positive number represents flow into the river or discharge. A negative number refers to surface water recharging the adjacent aquifer.

A comparison of individual seepage meter flux measurements versus others within each sampling period was also made. This comparison was used to help determine if any variations occurred within a given sampling period. Next, river stage (elevation) data was plotted over the same sampling period. A comparison of various river stages to relative values of high flux and low flux was used to determine what effects on bank storage existed. Finally, the changing water elevation data for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
the monitoring wells adjacent to the river (Figure 22 and 23) were plotted with the flux and river stage data. This combined to provide information on the surface water (Kalamazoo River) and groundwater (both the upper and lower aquifers) interaction.

Seepage Meter Results

The seepage flux for the first trial ranged from a low of \(-0.21 \times 10^2\) cm/hr (indicating that recharge was occurring) to a high of \(1.676 \times 10^2\) cm/hr (showing discharge). The high reading was only for a two-hour time period and equilibrium with the surrounding environment probably had not been established. From prior experience with seepage meters it is known that equilibrium is commonly reached after 24 to 48 hours. Seepage meter #1 showed recharge to the aquifer through the first 43 hours then began to demonstrate discharge for the remainder of the test. This could have been caused by the close proximity to the shoreline or not being properly seated into the bottom sediments. Overall, the seepage meters showed movement of groundwater into the river throughout the trial period, with fluctuations occurring when river stage changed. The second trial period showed less variability than the first trial. This most likely was the result of the meters becoming better seated over time. During this trial the seepage meters constantly demonstrated discharge into the river, with a seepage flux low of \(0.12 \times 10^2\) cm/hr to a high of \(4.11 \times 10^2\) cm/hr.

Based on the average seepage flux of \(3.0 \times 10^2\) cm/hr, it is calculated the discharge of water to the river is 10.34 in/year. Compared to Rheaume (1990),
Figure 22. 1994 Seepage Flux Measurements With Kalamazoo River Stage.
Figure 23. 1995 Seepage Flux Measurements.
through the use of hydrographs of the Comstock, Michigan gauging station the calculated groundwater discharge rates for the Kalamazoo River of 12.1% or 8.79 in/year. This is also comparable to discharge estimates by Allen and others, (1972).

The variability among the flux measurements was probably due to several factors. One being the orientation of the seepage meters with respect to the river/shore (Figure 20). Typically seepage meter #5 being further from shore had a larger flux than meters #1 or #2, closer to shore. Even though the distance between the meters is small, the depth of water ranges from a few centimeters over seepage meter #1 and #2 to almost 1 meter over seepage meter #5. Another possible factor is the pumping from the City of Parchment Wellfield and/or the JRPC. Combined, or by themselves this could have some effect of seepage into and out of the river in the upper aquifer.

The difference in sampling frequency most likely explains the variability in the fluxes. Because the precise optimum sampling frequency for this situation is not known, each of the sample events used a different sampling period. It appears that the optimum sampling time for this site (each site will inevitably be different) is on the order of six to twelve hours. This conclusion was reached because the river fluctuates relatively quickly compared to changes in groundwater levels in the area. A shorter sample period closely related to the river fluctuations might detect short-term changes related to these movements. It is this fluctuation in the river stage and thus the head differences between the river and the adjacent unconfined aquifer that appears to be the major controlling factor in seepage flux variations. As the river
elevation rises the seepage flux decreases and as the river elevation goes down (preceding a storm) the seepage flux increases. Thus, it can be stated that as the river stage increases the discharge to the stream diminishes (but, does not reverse as would be the case in bank storage situation) and when the river stage decreases the discharge to the river by groundwater increases.
CHAPTER VI

HYDROLOGIC AND TRACER MODELING

Chemical Sampling, Inorganic and Stable Isotopes, Tracer Modeling

Hydrologic modeling was used to evaluate the hydraulic interaction of groundwater with the Kalamazoo River. A vertical two-dimensional model was developed for use with Quickflow (Rumbaugh, 1991) to determine surface water-groundwater interaction. Quickflow was also used in conjunction with chemical tracers to model the horizontal flow paths of groundwater and the trajectory of particles from the Kalamazoo River toward the wellfield.

Chemical tracer techniques were employed for two reasons. First, to determine the extent of hydraulic connectivity between the lower aquifer and the river. Second, to determine if chemical species unique to the river could be observed in the lower aquifer and detected in the wellfield. In the tracer technique, chemical species with relatively higher concentrations in the river could be used to directly determine or infer when river water was being drawn into the lower aquifer and could potentially be drawn into the wellfield by pumping. Additionally, concentration gradients of tracers were used to infer preferential flow directions and thus establish if directional mixing from the river and groundwater was occurring.
Inorganic chemical species that were selected for use as tracers were sulfate and chloride because both were at significantly higher concentrations in river water than in groundwater (Allen and others, 1972; Rheaume, 1990). Sulfate concentrations are especially high in the Kalamazoo River, probably due to urban runoff and treatment plant discharge into the river (Allen and others, 1972; Rheaume, 1990). Also, road deicing operations during the winter provide a spiked source of chloride that can be traced through the river-groundwater system.

Stable isotopes of hydrogen and carbon can also be used as tracers in the hydrologic system (Gat and Gonfiantini, 1981). Deuterium/hydrogen ratios in water and $^{13}\text{C}/^{12}\text{C}$ ratios in dissolved inorganic carbon (DIC), i.e., carbonate, bicarbonate, and aqueous carbon dioxide, are proven tracers. In principle, a shift in the stable isotope signature of these constituents in streams can be detected in the groundwater if the stream recharges the groundwater. Thus it is possible that both the hydraulic connectivity and the river's influence on groundwater at the wellfield can be inferred through the use of isotopic tracer techniques. By monitoring both inorganic and stable isotope tracers in the wellfield, the river and groundwater between the two inputs, source/sink and mixing relationships between the river and groundwater can be determined.
Sampling Procedure

Water samples were collected from the Kalamazoo River, the City of Parchment Wellfield, monitoring wells at the site, and two up-gradient residential wells (Figure 5).

Stream water from the Kalamazoo River was collected approximately 4 m (13.1 ft) from the shore on the east side of the river within the study area. Water was collected approximately 25 to 50 cm (10 to 20 in) below the surface. Groundwater samples from monitoring wells (2 inch diameter wells with 2.5 foot, 10 slot screens) were collected after purging. Purging removed stagnant water from the well bore prior to obtaining representative water samples from the formation. At least five well volumes of water were removed from high yield wells prior to sampling using a pumping rate of 2.5 liter/minute. For wells that had low yields, all the water in the well bore was removed, the wells were allowed to recover, and the process was repeated prior to sample collection.

In moving the pump from one sampling location to another, the electric submersible pump was cleaned by immersing it in a bucket of deionized water and recirculating the contents of the pump and tubing for at least one minute. The process was repeated in another bucket of deionized water to ensure proper rinse. Purge pumping prior to sample collection should remove any deionized water remaining in the pump system after rinsing.

Samples for inorganic chemical parameters were collected in polyethylene bottles, stored in ice at 4°C and analyzed within 8-16 hours. Water samples for stable
isotopes of hydrogen were collected in 20 ml scintillation vials which were tightly closed until analysis. Water for dissolved inorganic carbon (DIC) determination were collected in pre-evacuated septum tubes containing a magnetic stir bar and phosphoric acid (Atekwana and Krishnamurthy, 1997).

Sampling Analysis and Results

Samples collected for inorganic chemical species were removed from the ice chest and brought to approximately 20°C. Alkalinity, chloride and hardness were measured by titrimetric techniques. Silica, sulfate, iron, nitrates, and ammonia were measured by colorimetric techniques (HACH, 1992). Potassium and sodium were determined by inductively coupled plasma emission technique (ICP) and total organic carbon (TOC) was measured by dry combustion after inorganic carbon was removed by the Institute for Water Sciences Water Quality Lab. Specific conductance, total dissolved solids (TDS), dissolved oxygen (DO), temperature and pH were measured in the field using portable meters which were calibrated prior to use.

The result of the chemical analyses conducted on 9/10/95, 4/3/96, and 1/23/97 are shown in Table 11. Analysis for September 10, 1995 show specific conductances ranging from a high of 940 (μS/cm) in C-Deep to a low of 440 (μS/cm) in C-Shallow. The chloride values ranged from a high of 56.8 mg/l in the river to a low of 4.8 mg/l in C-Deep, with the city wellfield measuring 16 mg/l. Nitrate levels were non-detectable in all samples except for the city wellfield, which registered 0.5 mg/l.
Table 11

General Chemistry Data

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>River</th>
<th>C-Shallow</th>
<th>C-Deep</th>
<th>B-Deep</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/10/95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH Field</td>
<td>7.89</td>
<td>7.32</td>
<td>7.17</td>
<td>7.08</td>
<td>7.58</td>
</tr>
<tr>
<td>Conductance (µS/cm)</td>
<td>770</td>
<td>440</td>
<td>940</td>
<td>800</td>
<td>660</td>
</tr>
<tr>
<td>Temp (°C)</td>
<td>24.4</td>
<td>17.6</td>
<td>22.3</td>
<td>15.9</td>
<td>25.3</td>
</tr>
<tr>
<td>TDS</td>
<td>254.1</td>
<td>145.2</td>
<td>310.2</td>
<td>264</td>
<td>217</td>
</tr>
<tr>
<td>DO (mg/l)</td>
<td>7.7</td>
<td>11.3</td>
<td>14.4</td>
<td>17.9</td>
<td>*</td>
</tr>
<tr>
<td>Total Hardness</td>
<td>27.6</td>
<td>18.9</td>
<td>41.9</td>
<td>34.1</td>
<td>28.7</td>
</tr>
<tr>
<td>Calcium Hardness</td>
<td>17.9</td>
<td>12</td>
<td>26.4</td>
<td>22.5</td>
<td>18.1</td>
</tr>
<tr>
<td>Magnesium Hardness</td>
<td>9.7</td>
<td>6.9</td>
<td>15.5</td>
<td>11.6</td>
<td>10.6</td>
</tr>
<tr>
<td>Chloride (mg/l)</td>
<td>56.8</td>
<td>5.4</td>
<td>4.8</td>
<td>16.1</td>
<td>16</td>
</tr>
<tr>
<td>Alkalinity (mg/l)</td>
<td>202</td>
<td>162</td>
<td>226</td>
<td>287</td>
<td>221</td>
</tr>
<tr>
<td>CaCO₃</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iron (mg/l)</td>
<td>0.1</td>
<td>1.2</td>
<td>0.9</td>
<td>2.59</td>
<td>0.25</td>
</tr>
<tr>
<td>Silica (mg/l)</td>
<td>9</td>
<td>12</td>
<td>16</td>
<td>16</td>
<td>15</td>
</tr>
<tr>
<td>Sulfate (mg/l)</td>
<td>70</td>
<td>29</td>
<td>52</td>
<td>55</td>
<td>55</td>
</tr>
<tr>
<td>Nitrate (mg/l)</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>0.5</td>
</tr>
<tr>
<td>Ammonia (mg/l)</td>
<td>0.22</td>
<td>0.33</td>
<td>0.6</td>
<td>0.55</td>
<td>0.1</td>
</tr>
<tr>
<td>TOC</td>
<td>8.74</td>
<td>4.1</td>
<td>8.05</td>
<td>1.47</td>
<td>2.75</td>
</tr>
<tr>
<td>Sodium (mg/l)</td>
<td>38.6</td>
<td>2.68</td>
<td>6.6</td>
<td>7.64</td>
<td>7.9</td>
</tr>
<tr>
<td>Potassium (mg/l)</td>
<td>3.38</td>
<td><1.2</td>
<td>2.78</td>
<td>4.6</td>
<td>3.16</td>
</tr>
<tr>
<td>4/3/96</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>8.14</td>
<td>7.02</td>
<td>7.13</td>
<td>7.16</td>
<td>7.57</td>
</tr>
<tr>
<td>Conductance (µS/cm)</td>
<td>760</td>
<td>650</td>
<td>*</td>
<td>600</td>
<td>575</td>
</tr>
<tr>
<td>Sodium (mg/l)</td>
<td>32</td>
<td>28.2</td>
<td>6.04</td>
<td>8.67</td>
<td>8.51</td>
</tr>
<tr>
<td>Potassium (mg/l)</td>
<td>1.44</td>
<td>0.924</td>
<td>1.72</td>
<td>1.38</td>
<td><0.85</td>
</tr>
<tr>
<td>1/23/96</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH Field</td>
<td>7.74</td>
<td>6.6</td>
<td>7.33</td>
<td>6.86</td>
<td>7.33</td>
</tr>
<tr>
<td>Conductance (µS/cm)</td>
<td>705</td>
<td>660</td>
<td>485</td>
<td>650</td>
<td>539</td>
</tr>
<tr>
<td>Alkalinity (mg/l)</td>
<td>215</td>
<td>243</td>
<td>247</td>
<td>317</td>
<td>232</td>
</tr>
<tr>
<td>CaCO₃</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloride (mg/l)</td>
<td>67</td>
<td>34</td>
<td>62</td>
<td>20</td>
<td>18</td>
</tr>
<tr>
<td>Sulfate (mg/l)</td>
<td>73</td>
<td>62</td>
<td>80</td>
<td>57</td>
<td>53</td>
</tr>
<tr>
<td>Nitrate (mg/l)</td>
<td>1</td>
<td>0.1</td>
<td>0.9</td>
<td>0.9</td>
<td>1.1</td>
</tr>
<tr>
<td>Silica (mg/l)</td>
<td>12</td>
<td>11</td>
<td>15</td>
<td>14</td>
<td>15</td>
</tr>
</tbody>
</table>

*Not Measured ND=non-detect
Results from the April 3, 1996 survey show sodium concentrations in the river of 32 mg/l, with values of 8.67 and 8.51 mg/l in B-Deep and the city wellfield respectively. Analytical results from January 23, 1997 samples showed chloride ranged from 67 to 18 mg/l, sulfate ranging from a high of 73 mg/l to a low of 53 mg/l and alkalinity from a high of 317 mg/l in B-Deep to a low in the river of 215 mg/l.

Water was converted to hydrogen gas for isotopic measurements over hot uranium. A gas evolution technique was used for DIC extraction (Atekwana and Krishnamurthy, 1997). Isotope measurements of both D/H and 13C/12C were made with a Fison Optima mass spectrometer in the IWS Isotope lab. The isotope ratios are reported in δ notation in per mil where:

$$\delta (\%o) = \left(\frac{R_{sample}}{R_{standard}} - 1 \right) \times 10^3$$

R is D/H or 13C/12C. Values are reported relative to SMOW and PDB standards for hydrogen and for carbon respectively. Routine δD, $\delta ^{13}$C and DIC concentration measurements had an overall precision of 1 $\%o$, 0.1 $\%o$ and 1% respectively. The results of the stable isotope measurements are shown in Table 12 and 13.

δD values collectively show no significant difference for these sampling periods. The δD values for Kalamazoo River, the monitoring wells, and samples from the city wellfield are similar. From these isotopic values, it appears a river/groundwater relation is not evident. The lack of difference in the δD isotopic ratio could be attributed to homogenization of the seasonal δD signal observed in precipitation in the Kalamazoo area (Machavaram and Krishnamurthy, 1994). The
attenuation of the precipitation signal could occur through infiltration and rapid mixing with a large isotopically homogenized groundwater reservoir. In addition, the lack of difference could be explained by a dominance of groundwater component in the river. The values obtained in this study are consistent with the annual average value in precipitation (Machavaram and Krishnamurthy, 1994) and to values measured for several groundwater samples in the Kalamazoo area (Atekwana and Krishnamurthy unpublished data). Mixing of river water with groundwater, while possible, cannot be demonstrated by these small shifts in hydrogen isotope values.

Table 12

Collected δD Data

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>δD ‰ (12/29/94)</th>
<th>δD ‰ (1/9/95)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-Deep</td>
<td>-60</td>
<td>-61</td>
</tr>
<tr>
<td>C-Deep</td>
<td>-53</td>
<td>-61</td>
</tr>
<tr>
<td>C-Shallow</td>
<td>-55</td>
<td>-58</td>
</tr>
<tr>
<td>River</td>
<td>-58</td>
<td>-60</td>
</tr>
<tr>
<td>City</td>
<td>-61</td>
<td>-65</td>
</tr>
<tr>
<td>GW #1</td>
<td>-61</td>
<td>-61</td>
</tr>
</tbody>
</table>

DIC concentrations ranged from a high of 96.8 mg C/l in C-Shallow to a low of 47.4 mg C/l in the river. During the January 23, 1997 sampling, DIC concentrations ranged from a high of 77.9 mg C/l in the shallow aquifer (CH3) to a low of 43.5 mg C/l in the deeper aquifer (C-Deep). During the two sampling periods, the δ¹³C (DIC) ranged from -22 to -25 and -10 to -15 ‰ for 4/5/96 and 1/23/97 surveys respectively.
Table 13

DIC and δ^{13}C Data

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>DIC (mg C/l) 4/5/96</th>
<th>δ^{13}C (‰) 4/5/96</th>
<th>DIC (mg C/l) 1/23/97</th>
<th>δ^{13}C (‰) 1/23/97</th>
</tr>
</thead>
<tbody>
<tr>
<td>River</td>
<td>50.2</td>
<td>-25.2</td>
<td>49.6</td>
<td>-11.4</td>
</tr>
<tr>
<td>C-Shallow</td>
<td>96.8</td>
<td>-22.7</td>
<td>68.5</td>
<td>-14.6</td>
</tr>
<tr>
<td>C-Deep</td>
<td>57</td>
<td>-25.2</td>
<td>43.5</td>
<td>-13.5</td>
</tr>
<tr>
<td>B-Deep</td>
<td>73.9</td>
<td>-22.8</td>
<td>70.7</td>
<td>-13.7</td>
</tr>
<tr>
<td>City</td>
<td>53.5</td>
<td>-25.4</td>
<td>72</td>
<td>-12.4</td>
</tr>
<tr>
<td>CHS 1</td>
<td>-</td>
<td>-</td>
<td>55.1</td>
<td>-10.4</td>
</tr>
<tr>
<td>CHS 2</td>
<td>-</td>
<td>-</td>
<td>47.4</td>
<td>-13.8</td>
</tr>
<tr>
<td>CHS 3</td>
<td>-</td>
<td>-</td>
<td>77.9</td>
<td>-10.5</td>
</tr>
<tr>
<td>GW #1</td>
<td>-</td>
<td>-</td>
<td>53</td>
<td>-13.1</td>
</tr>
<tr>
<td>GW #2</td>
<td>-</td>
<td>-</td>
<td>62.8</td>
<td>-12.3</td>
</tr>
</tbody>
</table>

Modeling

In order to develop the hypothesis that the city wellfield and the Kalamazoo River are interacting with each other, a groundwater model was designed for the site. This model evaluated flow into the wellfield from three possible sources. These sources included regional groundwater up-gradient from the wellfield, the Kalamazoo River and a combination of the two. The hydrology of the wellfield was assessed through the use of two-dimensional models. Possible flow paths in and around the wellfield and river were evaluated and particle tracing used to interpret the chemical and isotopic data.

The computer program Quickflow was used to track the horizontal flow paths of the groundwater at the site. Quickflow is an analytical model that simulates two-dimensional groundwater flow. The principle of superposition was used to evaluate a
pumping well or river in a uniform regional flow field from multiple analytical functions. The model depicts the flow field using streamlines, particle traces, and contours of hydraulic head. The streamlines are computed semi-analytically to illustrate groundwater flow directions. Numerical particle-tracking techniques were used to compute travel times and flow directions.

In the first step of modeling, the hydrologic flow conditions for the wellfield were analyzed. Data for the aquifer parameters needed as input into the model were obtained from previous aquifer performance tests (Jones, 1992). Geological and recharge information obtained as part of the current study was also used as input for the model. In addition, regional groundwater flow direction (Jones, 1986) and water budget recharge rates were utilized. Hydraulic gradient was estimated from the head distribution.

The following input parameters were used for the hydrologic model simulation: (a) aquifer hydraulic conductivity: 407 ft/day, (b) aquifer top elevation: 745 ft, (c) aquifer bottom elevation: 645 ft, (d) hydraulic gradient: 0.0001 at 110 degree azimuth, (e) uniform recharge rate: 0.00068 ft/day, (f) reference head: 744 ft located at the river, (g) aquifer storage coefficient: 1.8 x 10^-4, (h) porosity: 0.28, and (i) time of simulation 365 days

Other analytical elements used for the model included a pumping well, pumping at a rate of 66,850 gpd (simulating the wellfield pumping well), and a linesink representing the Kalamazoo River. The head distributions and streamlines...
for this simulation are shown in Figure 24. The streamlines show the flow of regional groundwater and river water towards the wellfield.

Particle tracing of possible paths of water in and around the wellfield and the river were evaluated. Two scenarios were created to aid in the interpretation of the chemical tracers. The first source placed the particles in the flow path of the streamlines between the river and the wellfield in the southern portion of the site. The second source placed the particles parallel to the river at the site.

The results of the particle tracing are shown in Figure 24. The results show that particle tracks introduced in the flow regime between the wellfield and the river were consistent with the expected trajectory of the regional groundwater flow. Thus the chemical species observed in water samples at the study site should be consistent with the regional evolution of groundwater chemistry, and any perturbations observed. Because the trajectory for particles from the river are drawn into the pumping well indicating possible mixing of river water and groundwater at the location of monitoring well C-Deep and the wellfield, it is possible for river water to enter the aquifer and migrate towards the pumping well. If this scenario is possible, the chemistry of the groundwater at the site should reflect the influence of river water.

The particle traces were compared to chloride, sulfate and carbon isotope results (Figure 25). In these models of the study area, the river is shown on the west and the wellfield to the east. The monitoring wells are shown in their relative positions with respect to the river and city wellfield.
Figure 24. Quickflow Flow, Model of Particle Traces and Groundwater Flow Paths.
Figure 25. Distribution of Inorganic Tracer Species.
Modeling of basic chemical data in natural unpolluted aquifers is based on the expected evolutionary sequence from areas of recharge to areas of discharge. As groundwater evolves, changes in concentrations of chemical species are observed along the flow path (Freeze and Cherry, 1979). Thus in the study area, disruption of this chemical evolutionary direction can be indicative of alterations in the natural flow paths. At the study site, the regional/local groundwater flow is towards the Kalamazoo River, which serves as a discharge point for groundwater. Thus, the most chemically evolved water within the study area should be groundwater discharging into the river. Precipitation events are expected to have greater influence on the hydrogeochemistry of the river than the aquifer. This influence can result in dilution of chemical species input from baseflow or additional chemical species that are unique to surface runoff from up gradient sources. Such species include chlorides from road deicing operations during the winter months.

Tracer Results

In evaluating chemical tracers the source is important. In the present case, possible sources include groundwater and the Kalamazoo River. Assessing inputs of transient tracer (e.g. chloride from runoff) into the study area along with their temporal distributions are important. During the winter months the application of salt for road maintenance results in elevated chloride levels in the river. These chloride levels, which occur during periods of snow melt, can serve as tracers where streams recharge the groundwater. In these instances, a chloride concentration gradient may
be observed in the groundwater system if the river recharges the groundwater. Results of a chloride survey at the study site (9/10/95) show the lowest chloride concentration in well C-Deep (4.8 mg/l) and higher readings in well B-Deep and the city wellfield (18 mg/l) (Figure 24). The measured chloride concentration for the river sample was 56.8 mg/l. Although the chloride levels in the river were higher than the groundwater in the study area, there appears to be no evidence of river-groundwater interaction based on the observed chloride gradient. However, a subsequent survey conducted on 1/23/97, two days after a snow melt event, high chloride concentration were observed in C-Deep (62 mg/l). The chloride concentration in the river was 67 mg/l. Because the source of the high chlorides is attributed to the river, high chloride levels in C-Deep below the upper clay-rich layer is indicative of river-groundwater recharge. The observed chloride gradient from the river toward the wellfield is consistent with the particle tracer paths from the hydrologic model for the site. In addition, during this period, the river stage was high and thus augmented the hydraulic head toward the wellfield due to the city's pumping. The lack of a similarly observed increase in the chloride concentration in C-Deep during the 9/10/95 survey can be attributed to the transient nature of the river-groundwater interaction at this site. During this period, the river stage is lower and thus it is conceivable that the hydraulic gradient between the river and the wellfield is lower. In this instance, local/regional groundwater dominates the supply to the wellfield. Other chemical data for the same survey period are consistent with this interpretation. From Table 11, specific conductance, alkalinity, and TOC showed
more dilute concentrations in the wellfield water than the down gradient well B-Deep. Dilution of the chemical species is suggestive of river inputs to groundwater and thus mixing along a river groundwater flow path. The sulfate data (Figure 25) showed trends that are similar to those of river-groundwater recharge demonstrated by the chloride data. Water samples for the 1/23/97 survey exhibited high sulfate concentration in the river, 73 mg/l. Well C-Deep shows higher concentrations from the first sampling to the second, 52 to 80 mg/l. This along with the increased concentrations in C-Shallow, 29 to 62 mg/l demonstrates the influence of the river recharge to the groundwater system. However, this shift in concentrations is not present in B-Deep and the city wellfield (53 to 57 mg/l), which remained consistent throughout both sampling periods. In addition, specific conductance and alkalinity measurements are consistent with this interpretation.

The use of the carbon isotopic tracer is based on the temporal evolution of carbon in the groundwater system. Carbon isotopic values for isotopically fully evolved natural unpolluted groundwater in the Kalamazoo area is about $-10 \pm 1^\%$ (Atekwana and Krishnamurthy, 1997). Streams in the region have $\delta^{13}C$ values in this range. These streams may be considered to be recharged by base flow consisting of isotopically fully evolved groundwater during 100% baseflow conditions. For the study site, groundwater near a stream discharge point may be expected to have carbon isotopic values similar to that of isotopically fully evolved groundwater. Carbon isotope surveys show that the water in the study site is not fully evolved isotopically. The carbon isotope distribution for sampling locations is shown in Table 13. The
Kalamazoo River flood plain in the study area contains wetland vegetation. Biogenic carbon dioxide generated in this wetland can influence the carbon isotope values in the groundwater. Because the upper aquifer is separated from the lower aquifer by a clay layer, wells C-Deep and B-Deep are not expected to be influenced by biogenic CO$_2$ from the upper aquifer. However, carbon isotope data shows the groundwater in both the shallow and deeper aquifer is influenced by the production of CO$_2$ from the riverine wetland. This influence appears to be indicative of discontinuity in the separating clay layer. It is noteworthy to mention that temporal shifts in the carbon isotope signature is reflected in the upper and lower aquifers which is consistent with discontinuity in the upper confining clay layer. In addition, since the carbon isotope value of the pumping well is not significantly different from those of the groundwater C-Deep and B-Deep, it is possible to infer the mixing of riverine wetland derived water with normal evolving groundwater supplied upgradient from the pumping well.

In the interpretation of the chemical tracer models, the actual magnitude of the chemical tracer signal in the river was not assessed. It is possible that the river water sampled during the survey did not represent the actual water that induced the chemical gradients observed in the groundwater sampled at the site. In addition, the duration of the chemical signal in the groundwater system was not assessed.

Summary and Conclusions

A hydrologic model of the site shows that a two-dimensional model can adequately describe flow induced from the Kalamazoo River into the groundwater
system by pumping in the City of Parchment Wellfield. Particle tracking paths provided a basis for the interpretation of chemical tracer results. The chemical tracers demonstrate that the river and the groundwater system at the study site are hydraulically connected. Perturbations in chemical parameters in the river cause increases in the concentration of these chemical species in the groundwater system. Although the data does not show any impact on water quality in the wellfield, it does show that pumping in the wellfield does cause shifts in the hydraulic gradient in the aquifer. The pumping induced gradient coupled with high stream stage appears capable of inducing river water to flow towards the wellfield.
CHAPTER VII

CONCLUSION

Under normal river flow, the regional aquifers discharge to the Kalamazoo River (Allen and others, 1972; Rheaume, 1990). However, this study shows that as the river stage rises, recharge from the river to the aquifer may occur. It is during this time of high river stage that a hydraulic gradient toward the wellfield is evident. Further, it is seen that pumping from the City of Parchment wellfield augments this gradient. This increase in river stage and increase in the hydraulic gradient is important for the protection of the wellfield from surface/riverborne contamination from the Kalamazoo River.

Conversely, during low flow conditions combined with low wellfield demand, river interaction with groundwater is minimal. In the lower production aquifer the aquifer performance and chemical tracer models demonstrate the hydraulic communication with the river.

In the past, several aquifer performance tests were run. As with the current study, the results were conflicting. The 1950 aquifer test (Williams & Works, 1980) concluded that the producing aquifer had a high transmissivity and recharge from the Kalamazoo River was good. On the other hand, the 1991 aquifer test run by Peerless-Midwest at the City of Parchment Wellfield suggested that a clay-rich layer confines the lower aquifer (Jones, 1992). The study further concluded that the clay layer

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
present at the site is continuous throughout the area. The conflicting findings of these studies come from the nature of the tests, lack of control wells and interpretation of the data.

Through the use of geophysical mapping, the extent of the clay-rich layer was mapped between 1995 and 1997. GPR and resistivity surveys indicate that the clay-rich layer is not of uniform thickness nor is it continuous. From the GPR surveys, buried river channels were identified which appear to persist throughout the area, and provide a means of interconnectivity between the upper and lower aquifers.

Seepage meters used to measure the flux across the Kalamazoo River demonstrated constant discharge into the river. It was observed that the river fluctuates relatively quickly compared to changes in groundwater levels. These fluctuations in the river stage and thus the head differences between the river and the adjacent unconfined aquifer appear to be the major controlling factor in seepage flux variations. As the river stage rises the seepage flux decreases and as the river stage decreases (preceding a storm) the seepage flux increases. Thus, as the river stage increases, discharge to the stream diminishes (but, does not reverse as would be the case in bank storage situation) and when the river stage decreases the discharge to the river by groundwater increases.

The hydrologic model for the study site shows hydrologic induced flow due to pumping in the City of Parchment Wellfield. Particle tracking paths combined with geochemical and isotopic data provided the basis for this interpretation. The chemical tracers demonstrate that the river and the groundwater system at the study
site are hydraulically connected. Perturbations in chemical parameters in the river cause increase in the concentration of these chemical species in the groundwater system. Although the data does not show impact to the wellfield, it does show that pumping in the wellfield does cause shifts in the hydraulic gradient in the aquifer and in the distribution of chemical species. The pumping induced gradients coupled with high stream stage appear to induce river water to flow towards the wellfield.
CHAPTER VIII

FUTURE WORK

Several possibilities for future work exist in and around the City of Parchment Wellfield. Establishing a greater density of monitoring points between the wellfield and the Kalamazoo River, along with several permanent upgradient wells would facilitate more detailed study of the sites hydrogeochemistry. It is recommended that a higher frequency of sampling events be done, on the order of daily to weekly monitoring for an extended period of time based on previous results. This will allow for small changes to be documented and trends associated with river fluctuations to be looked at closely. By closely monitoring the chemical changes taking place in both the wellfield and the river, the researcher will be able to better establish the quantitative relationship of the river and wellfield.

Establishing a monitoring network on the west side of the Kalamazoo River is another important step that needs to be done with any ensuing research on the wellfield. The possibility of recharge coming from the west side of the river has been proposed by the MDEQ. By establishing a monitoring network on the west side of the river, these and other wetlands can be looked at in terms of what they contribute to the river/wellfield system.

Geophysical studies should be performed on the bedrock in the area. This will allow for a better determination of the bottom boundary of the producing aquifer.
Finally, a longer, more closely monitored aquifer test should also be run to develop the exact extent of the area of pumping influence. This would allow for a better recharge model to be developed. The test should run for at least 54 hours with no pumping taking place during the recovery period. This prolonged aquifer stress test would prove whether the wellfield is pulling water from under the river or from the river itself.
Appendix A

Well Logs
<table>
<thead>
<tr>
<th>FORMATION FOUND</th>
<th>DESCRIPTION</th>
<th>DEPTH TO TOP</th>
<th>DEPTH TO BOTTOM</th>
<th>THICKNESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top Soil</td>
<td></td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Gravely Clay</td>
<td></td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Sand & Gravel</td>
<td></td>
<td>3</td>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td>Silty Clay</td>
<td></td>
<td>18</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>Sand & Gravel (Grey)</td>
<td></td>
<td>12</td>
<td>54</td>
<td>42</td>
</tr>
<tr>
<td>Clay</td>
<td></td>
<td>58</td>
<td>60</td>
<td>2</td>
</tr>
</tbody>
</table>

Note: The distance hole drilled by P. Cable took 2.5 hours.

[Drilled by Turner & Bright]
LITHOLOGY

Fill & Topped

- Coarse Sand & Gravel

- Fine Sand

- Clay

- Coarse Sand & Gravel

- Clay

- Coarse Sand & Gravel

- Hard Sand Clay

Ground Level 750' S

- 38 INCH OPEN HOLE DRILLED
 BY R.C. METHOD

- 34 INCH STEEL CASING

- CEMENT SEAL

- 435 SILICA GRAVEL PACK

- 15 FT. OF 12 IN. EVERDUR
 SHUTTER BLISS IN SLOT SCREEN

City Parchment
State Michigan

Well Location: 600' N. of S. Property Line & 200' E. of W. Property Line 400' N. of Well #1

County Kalamazoo
Twp. Coopet

T1S R1W N1 SE1 NE1 34

Test Rate 1650 GPM
Static Water Level 8 Ft.
Pumping Level 23 Ft.
Specific Capacity 109.3 GPM/Ft. D.D.

Order: Others

Date Drilled 1/27/53

Job No.

PEERLESS-MIDWEST, INC.
FIELD ANALYSIS OF WATER AFTER PUMPING 1000 GPM FOR 24 HOURS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardness</td>
<td>14.5 GPG</td>
</tr>
<tr>
<td>Iron</td>
<td>0.48 PPM</td>
</tr>
<tr>
<td>PH</td>
<td>7.5</td>
</tr>
</tbody>
</table>

City: Parchment
State: Michigan
Location: 450' W. of 20th Street and 1660' N. of W 1/4 Lin Sec. 34
County: Kalamazoo
Twp: Cooper
Section: 34 - T. 15, R 11 2

Test Capacity: 1000 GPM
GPM, Static Water Level: 26 ft
Specific Capacity: 1 GPM/ft
Date Drilled: April 11, 1973
Driller: Paul Wyatt
Job No: 14
Well No: 1
From Land Description: S. East and N. North of SW Corner of SE.
From Street or Road: 100' West of 20th St., 200' N. of Property Line.

<table>
<thead>
<tr>
<th>FROM NATURAL GROUND LEVEL</th>
<th>DESCRIPTION FOUND — DESCRIBE FULLY</th>
<th>Depth In Feet</th>
<th>Percent of Section</th>
<th>Volume in Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top Soil</td>
<td>101</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dirty Sand</td>
<td>612</td>
<td>111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sand and Gravel (dirty)</td>
<td>121</td>
<td>131</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sand and Gravel (clean)</td>
<td>161</td>
<td>661</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td>Brown Clay</td>
<td>661</td>
<td>661</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td>Green Clay</td>
<td>661</td>
<td>661</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td>Green Sandy Silt</td>
<td>661</td>
<td>771</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>Gravel (dirty)</td>
<td>771</td>
<td>771</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>Gravel and Cold Water Shale</td>
<td>771</td>
<td>881</td>
<td>111</td>
<td></td>
</tr>
<tr>
<td>FORMATION FOUND — DESCRIBE FULLY</td>
<td>FROM NATURAL GROUND LEVEL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Top Soil</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clay and Sandy Clay</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clay, Sand, and Gravel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sand and Gravel Clean</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brown Clay</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Top Soil 0 3 3
Clay and Sandy Clay 3 10 7
Clay, Sand, and Gravel 10 21 11
Sand and Gravel Clean 21 28 7
Brown Clay 23 52 24

2 inch diameter hole drilled by [] Cable Tool [] Rotary [] Jetting

Date Drilled: []

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
FORMATION FOUND - DESCRIBE FULLY

<table>
<thead>
<tr>
<th></th>
<th>Depth to Top of</th>
<th>Depth to Bottom of</th>
<th>Thickness of Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top Soil</td>
<td>0</td>
<td>k</td>
<td></td>
</tr>
<tr>
<td>Gravel</td>
<td>10</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td>Sandy Clay</td>
<td>10</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td>Sand & Gravel</td>
<td>16</td>
<td>30</td>
<td>14</td>
</tr>
<tr>
<td>Clay</td>
<td>30</td>
<td>60</td>
<td>30</td>
</tr>
<tr>
<td>Clay & Sand</td>
<td>60</td>
<td>62</td>
<td>2</td>
</tr>
<tr>
<td>Sand & Gravel</td>
<td>62</td>
<td>67</td>
<td>5</td>
</tr>
<tr>
<td>Silt Clay</td>
<td>67</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>Shale</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
<table>
<thead>
<tr>
<th>FORMATION FOUND — DESCRIBE FULLY</th>
<th>FROM NATURAL GROUND LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top Soil</td>
<td>0</td>
</tr>
<tr>
<td>Sand & Gravel</td>
<td>32 (1) 28 (7)</td>
</tr>
<tr>
<td>Clay & Gravel</td>
<td>32 (23)</td>
</tr>
<tr>
<td>Gravel</td>
<td>56 (1) 56 (1)</td>
</tr>
<tr>
<td>Fine Sand</td>
<td>56 (1) 56 (1)</td>
</tr>
<tr>
<td>Clay & Gravel</td>
<td>57 (5)</td>
</tr>
<tr>
<td>Sand & Gravel</td>
<td>62 (1) 63 (1)</td>
</tr>
<tr>
<td>Sand & Gravel with Clay</td>
<td>63 (5)</td>
</tr>
<tr>
<td>Sand, Clay & Slate</td>
<td>68 (5)</td>
</tr>
</tbody>
</table>

Pipe left in hole: 6 in.

Date Started: 1/1/50

Date Completed: 1/1/50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
LAKE-NORTHERN COMPANY

MICHIGAN, INDIANA

WELL LOG No. 623-2

City Parchment **County** Kalamazoo

Owner City of Parchment **Township** Cooper

Site #2 - School Property **Section** 2

Location State Michigan

From Land Description: st. East and

From Street or Road: 720' N. of Parchment St.

Clarinin St. Approx. 700' S.E. of School S146.

FORMATION FOUND – DESCRIBE FULLY

<table>
<thead>
<tr>
<th>Description</th>
<th>Depth to Bed</th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top Soil</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Muddy Sand & Gravel</td>
<td>15</td>
<td>6</td>
</tr>
<tr>
<td>Clean Sand Little gravel</td>
<td>21</td>
<td>18</td>
</tr>
<tr>
<td>Clean Gravel</td>
<td>39</td>
<td>2</td>
</tr>
<tr>
<td>Firm Brown Sand</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Brown Clean Sand</td>
<td>75</td>
<td>9</td>
</tr>
<tr>
<td>Brown Sandy Clay</td>
<td>93</td>
<td>6</td>
</tr>
<tr>
<td>Brown Sandy Dirty</td>
<td>87</td>
<td>5</td>
</tr>
<tr>
<td>Fine Brown Sand</td>
<td>116</td>
<td>27</td>
</tr>
<tr>
<td>Sand - Gravel Dirty</td>
<td>125, 125</td>
<td>9, 5</td>
</tr>
<tr>
<td>Green Shale</td>
<td>130</td>
<td>5</td>
</tr>
</tbody>
</table>

- Stepped in Shale

- 2½ inch diameter hole drilled by - Cable Tool: - Rotary: - Jetting

- Drilled by: - Finished: - Tested: - Final

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
<table>
<thead>
<tr>
<th>FORMATION FOUND</th>
<th>DESCRIBE FULLY</th>
<th>FROM NATURAL GROUND LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top Soil - Clay</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Sand</td>
<td>3</td>
<td>21</td>
</tr>
<tr>
<td>Clay</td>
<td>21</td>
<td>25</td>
</tr>
<tr>
<td>Hard Packed gravel</td>
<td>25</td>
<td>36</td>
</tr>
<tr>
<td>clay</td>
<td>36</td>
<td>39</td>
</tr>
<tr>
<td>Gravel - clay sand streaks</td>
<td>39</td>
<td>55</td>
</tr>
<tr>
<td>Sand - dirty silty</td>
<td>55</td>
<td>69</td>
</tr>
<tr>
<td>Cleaner fine sand</td>
<td>69</td>
<td>106</td>
</tr>
<tr>
<td>Sand fine gravel dirty</td>
<td>106</td>
<td>113</td>
</tr>
<tr>
<td>Shale</td>
<td>113</td>
<td>125</td>
</tr>
</tbody>
</table>

Pipe left in hole 125'
<table>
<thead>
<tr>
<th>FORMATION FOUND — DESCRIBE FULLY</th>
<th>FROM NATURAL GROUND LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top Soil - Clay</td>
<td>0</td>
</tr>
<tr>
<td>General sandy gravel clay bound</td>
<td>6</td>
</tr>
<tr>
<td>Sand - fine to very fine - silty poor</td>
<td>1.5</td>
</tr>
</tbody>
</table>

2 inch diameter hole drilled by Cohen Tool No Boring
Pipe left in hole 92
<table>
<thead>
<tr>
<th>FORMATION FOUND — DESCRIBE FULLY</th>
<th>FROM NATURAL GROUND LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Depth to Top of</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Top Soil</td>
<td>6</td>
</tr>
<tr>
<td>Sand</td>
<td>2</td>
</tr>
<tr>
<td>Sandy Clay</td>
<td>24</td>
</tr>
<tr>
<td>Sand and Gravel</td>
<td>25</td>
</tr>
<tr>
<td>Fine Clean Sand</td>
<td>15</td>
</tr>
<tr>
<td>Medium Clean Sand</td>
<td>51</td>
</tr>
<tr>
<td>Coarse Sand</td>
<td>75</td>
</tr>
<tr>
<td>Silty Clay</td>
<td>78</td>
</tr>
<tr>
<td>Clean Clay</td>
<td>21</td>
</tr>
<tr>
<td>Clay</td>
<td>28</td>
</tr>
<tr>
<td>Clay & Sand</td>
<td>122</td>
</tr>
<tr>
<td>Coarse Sand</td>
<td>125</td>
</tr>
<tr>
<td>Clay</td>
<td>121</td>
</tr>
<tr>
<td>Clean Sand</td>
<td>136</td>
</tr>
<tr>
<td>Silty sand</td>
<td>135</td>
</tr>
<tr>
<td>Clay</td>
<td>139</td>
</tr>
<tr>
<td>Shale</td>
<td>145</td>
</tr>
</tbody>
</table>
Layn-Northern Company
Mishawaka, Indiana

<table>
<thead>
<tr>
<th>K TEST</th>
<th>PERMANENT</th>
<th>Job No. 15027</th>
</tr>
</thead>
<tbody>
<tr>
<td>WELL LOG No.</td>
<td>CITY, PARISH</td>
<td>County, Kalamazoo</td>
</tr>
<tr>
<td>Owner: City of Parma</td>
<td>Township, Cooper</td>
<td></td>
</tr>
<tr>
<td>Site #</td>
<td>Section</td>
<td>T. R. W</td>
</tr>
</tbody>
</table>

Location
- State: Michigan
- From Land Description: ________ N. East and ________ S. North of SW Corner of Sec. 34
- From Street or Road: 800' W. of 20th St., 1607' N. of E & W 1/4 line Sec. 34
- 800' E. of Kalamazoo River - Property owned by Quality Built Homes

FROM NATURAL GROUND LEVEL

<table>
<thead>
<tr>
<th>FORMATION FOUND</th>
<th>DESCRIBE FULLY</th>
<th>FROM NATURAL GROUND LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Depth in Feet</td>
<td>Depth to Surface in Feet</td>
</tr>
<tr>
<td>Top Soil</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Clay</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Sand</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Sand & Gravel</td>
<td>4</td>
<td>17</td>
</tr>
<tr>
<td>Silty Sand & Gravel</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>Clay</td>
<td>18</td>
<td>30</td>
</tr>
<tr>
<td>Sand & Gravel</td>
<td>30</td>
<td>51</td>
</tr>
<tr>
<td>Sandy and Gravel Clay</td>
<td>51</td>
<td>55</td>
</tr>
</tbody>
</table>

Last discovered hole drilled by Cable Tool - Rotary - Jettig

Date Start: 12/10/60 - Completed: 12/12/60 - Repr. E. 1237

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
WATER WELL AND PUMP RECORD

Location of Well
- Name: Kalamazoo
- Street Address & City of Well Location: 80' S. of Traverse Ave
- Sketch Map:

Permit Number

Ground Water
- **Drill & Sand**: 30' - 60'
- **Clay**: 97' - 119'
- **Gravel & Clay (dry)**: 3' - 102'
- **Coldwater Shale & Clay**: 3' - 125'
- **Water Bearing Shale**: 6' - 131'
- **Sand & Gravel**: 31' - 182'

Formation Description

<table>
<thead>
<tr>
<th>Formation</th>
<th>Thickness of Stratum</th>
<th>Depth to Bottom of Stratum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drill & Sand</td>
<td>30' - 60'</td>
<td></td>
</tr>
<tr>
<td>Clay</td>
<td>97' - 119'</td>
<td></td>
</tr>
<tr>
<td>Gravel & Clay</td>
<td>3' - 102'</td>
<td></td>
</tr>
<tr>
<td>Coldwater Shale & Clay</td>
<td>3' - 125'</td>
<td></td>
</tr>
<tr>
<td>Water Bearing Shale</td>
<td>6' - 131'</td>
<td></td>
</tr>
<tr>
<td>Sand & Gravel</td>
<td>31' - 182'</td>
<td></td>
</tr>
</tbody>
</table>

Screen Information
- **Type**: Plastic
- **Diameter**: 5
- **Threaded**: No
- **Height Above Grade**:
- **Height Below Grade**:

Well Data
- **Tenor Pumping**: 3 G.P.M.
- **After**: 3 G.P.M.

Well Grouted
- **Method**: Yes from 0 to 119'

Heavy Metals
- **Type**: Water Displaced upon Completion
- **Was old well plugged**: Yes

Pump Information
- **Model**: None installed

Water Well Contractor's Certification
- **Date**: 1-12-88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
<table>
<thead>
<tr>
<th>FORMATION FOUND — DESCRIBE FULLY</th>
<th>FROM NATURAL GROUND LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Depth to Top of Depth</td>
</tr>
<tr>
<td>Top Soil</td>
<td>0</td>
</tr>
<tr>
<td>Sandy Clay with Gravel</td>
<td>1</td>
</tr>
<tr>
<td>Sand and Gravel</td>
<td>6</td>
</tr>
<tr>
<td>Sand & Gravel</td>
<td>20</td>
</tr>
<tr>
<td>Sand</td>
<td>35</td>
</tr>
<tr>
<td>Clay</td>
<td>46</td>
</tr>
<tr>
<td>Cemented Sand</td>
<td>51</td>
</tr>
<tr>
<td>Fine Sand and Gravel</td>
<td>54</td>
</tr>
<tr>
<td>Sandy Clay</td>
<td>57</td>
</tr>
</tbody>
</table>

Pipe hole in hole: 15 1/2 in. dia. Tool: Dolly Shearing: 15 1/2 in. Former: Stack.
LAYNE NORTHERN COMPANY

ASHWAUBA, INDIANA

Job No.: X-1027

WELL LOG #: 106-C

Site #:

Owner: City of Ashwauba

City:

County: Kalamazoo

St. of:

North of: SW Corner of 5th & Ashwauba St.

Location:

State: Michigan

From Street: West of 20th St.

To Road: 300 ft. of E & W 1/4 Line Sec. 34

Formation Found — Describe Fully

<table>
<thead>
<tr>
<th>Formation Found</th>
<th>From Natural Ground Level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Feet</td>
</tr>
<tr>
<td>Top Soil</td>
<td>0</td>
</tr>
<tr>
<td>Muddy Sand & Gravel</td>
<td>2</td>
</tr>
<tr>
<td>Clean Gray Sand & Gravel</td>
<td>5</td>
</tr>
<tr>
<td>Clay</td>
<td>14</td>
</tr>
<tr>
<td>Clean Gray Sand & Gravel</td>
<td>22</td>
</tr>
<tr>
<td>Clay</td>
<td>54</td>
</tr>
</tbody>
</table>

6” - inch diameter hole drilled by

- Cable Tool
- Rotary
- Jetting

Pipe joint is

- 15 ft. of 1½” pipe and 3 ft. joint

Dated:

- 23, 1962

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
BIBLIOGRAPHY

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

