6-1995

Asymptotic Diagonalizations of a Linear Ordinary Differential System

Feipeng Xie
Western Michigan University

Follow this and additional works at: http://scholarworks.wmich.edu/dissertations
Part of the Applied Mathematics Commons

Recommended Citation
http://scholarworks.wmich.edu/dissertations/1794

This Dissertation-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Dissertations by an authorized administrator of ScholarWorks at WMU. For more information, please contact maira.bundza@wmich.edu.
ASYMPTOTIC DIAGONALIZATIONS OF A LINEAR ORDINARY DIFFERENTIAL SYSTEM

Feipeng Xie, Ph.D.
Western Michigan University, 1995

Consider the following system:

\[\frac{dy}{dt} = A(t)y, \quad t \in I_0 = [t_0, +\infty), \]

where \(A(t) = \Lambda(t) + R(t) \) with \(\Lambda(t) \) a diagonal matrix and \(t_0 \) is a finite number. In this dissertation, we will discuss the asymptotic solution of the system for the following two cases:

1. The real parts of the diagonal elements of \(\Lambda(t) \) are separated from each other for \(t \in I_0 \) by a fixed number and matrix \(R(t) \in L^p(I_0) \), where \(p > 1 \).

2. The real parts of some eigenvalues of \(A(t) \) have same limit as \(t \) goes to infinite.

Harris and Lutz (1977) proved that, in Case 1, the asymptotic solution of the system can be obtained by performing certain transformations repeatedly \(k \) times (\(k \) satisfies \(2^k \geq p \)). In Chapter II of this dissertation, the result of Harris and Lutz is generalized and the asymptotic solutions are given directly.

The asymptotic solution of the system in Case 2 is discussed in Chapter III and some known results are extended. In Chapter IV the main result of Chapter III is used to find the deficiency index of a certain fourth order ordinary self-adjoint differential operator.
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.
AKNOWLEDGEMENTS

My sincere thanks goes to my advisor, Professor Po-Fang Hsieh, for his professional guidance and friendship; to former Department Chairman, Professor Yousef Alavi, for his support and encouragement on my research.

My sincere thanks also goes to Professor Paul Eenigenburg and Professor Dennis Pence for their concern and help on my teaching, and their serving in the dissertation committee; to Professor Masahiro Iwano of Chuo University, Tokyo, Japan, for valuable discussions during the course of this dissertation research while he visited Western Michigan University in 1993-1994.

I am grateful to Professor Gary Chartrand for his graph theory course; to Professor John Kapenga for his participation on my dissertation committee; to Professor Niloufer Mackey, Professor Jung Chao Wang, Professor Qiji Zhu, Ms. Julie A. Scrivener and all the staffs and other faculty of the Department for their various help.

I dedicate this dissertation to my dear wife, Mei Yi. We have been struggling together with all the difficulties in these years.

Feipeng Xie
TABLE OF CONTENTS

AKNOWLEDGEMENTS ... ii

CHAPTER

I. INTRODUCTION ... 1

II. A GENERALIZATION OF THEOREM HW 8
 2.1 Introduction and Main Theorems .. 8
 2.2 Examples ... 12
 2.3 The Proof of Theorem 2.1.1 ... 18
 2.4 The Proof of Lemma 2.1.1 ... 25

III. ASYMPTOTIC BEHAVIOR FOR SYSTEM HAVING
 MULTIPLE EIGENVALUES .. 29
 3.1 Introduction ... 29
 3.2 The Main Theorem .. 34
 3.3 Proof of Theorem 3.2.1 ... 39
 3.4 Examples ... 51

IV. THE DEFICIENCY INDEX OF CERTAIN FOURTH ORDER
 ORDINARY SELF-ADJOINT DIFFERENTIAL OPERATORS 54
 4.1 Introduction ... 54
 4.2 Asymptotic Analysis ... 56
 4.3 Deficiency Index ... 71

BIBLIOGRAPHY ... 73
CHAPTER I

INTRODUCTION

The result of N. Levinson [31] in 1948, known as the Levinson Theorem, plays an important role in the study of the asymptotic behavior of solution of a linear system of differential equations, but as it is mentioned in the preface of [14] the initial applications of the theorem were only of a very straightforward kind. In order to find the asymptotic solutions of the linear systems of differential equations for which the Levinson Theorem can not be used directly, we have seen many extensions of this important theorem in last forty years (e.g. R. Bellman [1], [2], K. Chiba and T. Kimura [3], E.A. Coddington and N. Levinson [4], W.A. Coppel [5], A. Devinatz [6], A. Devinatz and J. Kaplan [9], M.S.P. Eastham [10], H. Gingold [17], H. Gingold, P.F. Hsieh and Y. Sibuya [18], W.A. Harris, Jr. and D.A. Lutz [21], [22], [23], W.A. Harris, Jr. and Y. Sibuya [24], P. Hartman [25], P. Hartman and A. Wintner [26], [27], P.F. Hsieh and F. Xie [28]). In this chapter we will give a brief introduction of the development of this theory. A good source for the general theory can be found in the book by Eastham [14].

Consider the linear system of differential equations

$$\frac{dy}{dt} = A(t)y,$$

where y is an n-dimensional vector and $A(t)$ is an $n \times n$ matrix continuous on $J_0 = [t_0, \infty)$, (t_0: finite). In order to state the Levinson theorem we need:

Assumption 1.1. The matrix $A(t)$ is in the form

$$A(t) = \Lambda(t) + R(t),$$

1
where $\Lambda(t) = \text{diag}\{\lambda_1(t), \lambda_2(t), \ldots, \lambda_n(t)\}$, with $\lambda_j(t), \ (j = 1, 2, \ldots, n)$, continuous on I_0.

Assumption 1.2. Let $D_{jk}(t)$ be the real part of $\lambda_j(t) - \lambda_k(t)$, i.e. $D_{jk}(t) = \Re(\lambda_j(t) - \lambda_k(t))$, $(j, k = 1, 2, \ldots, n)$. For each fixed j, the set of positive integers $\{1, 2, \ldots, n\}$ is the union of two disjoint subsets P_{j1} and P_{j2}, where

(i) $k \in P_{j1}$ if

$$\lim_{t \to +\infty} \int_{t_0}^{t} D_{jk}(\tau) \, d\tau = -\infty, \quad \int_{t_0}^{t} D_{jk}(\tau) \, d\tau < K, \quad t_0 \leq t \leq t,$$

for some positive number K;

(ii) $k \in P_{j2}$ if

$$\int_{t_0}^{t} D_{jk}(\tau) \, d\tau < K, \quad t_0 \leq t \leq t,$$

for some positive number K.

Assumption 1.3. The matrix $R(t)$ is an $n \times n$ matrix satisfying

$$R(t) \in L^1(I_0).$$

A version of the Levinson theorem can be stated as the following.

Theorem L [31]. Under the Assumptions 1.1, 1.2 and 1.3, there exists an $n \times n$ matrix $Q(t)$ such that

1. the derivative $Q'(t)$ exists, and the entries of $Q(t)$ and $Q'(t)$ are continuous in t on the interval I_0,

2. $\lim_{t \to +\infty} Q(t) = 0$,

3. the transformation:

$$y = [I_n + Q(t)]z$$

changes system (1.1) into

$$\frac{dz}{dt} = \Lambda(t)z.$$
on the interval I_0, where I_n is the $n \times n$ identity matrix.

Levinson also considered the following system:

$$\frac{dy}{dt} = [A + V(t) + R(t)]y,$$

(1.2)

where A is a constant matrix, $V(t)$ and $R(t)$ are $n \times n$ continuous matrices.

Assumption 1.4. The entries of matrix $V'(t)$ are continuous for $t \geq t_0$, $V(t) \to 0$ as $t \to \infty$, and $|V'(t)| \in L^1(I_0)$.

Theorem LE [31]. Assume that: (i) A is a constant matrix with distinct eigenvalues; (ii) $V(t)$ satisfies Assumption 1.4; (iii) $R'(t)$ is continuous for $t \geq t_0$, $R(t) \in L^1(I_0)$; and (iv) the eigenvalues of the matrix $A + V(t)$ satisfy Assumption 1.2. Then there exists an $n \times n$ matrix $Q(t)$ such that

1. the derivative $Q'(t)$ exists, and the entries of $Q(t)$ and $Q'(t)$ are continuous in t on the interval I_0,

2. $\lim_{t \to +\infty} Q(t) = 0$,

3. the transformation:

$$y = P[I_n + Q(t)]z$$

changes system (1.2) into

$$\frac{dz}{dt} = \Lambda(t)z$$

on the interval I_0, where P is a constant matrix such that $P^{-1}AP$ is a diagonal matrix and $\Lambda(t)$ is a diagonal matrix with diagonal elements the eigenvalues of $A + V(t)$.

Assumption 1.2 and 1.3 are not independent, but related each other. If $D_{jk}(t)$, $(j, k = 1, 2, \ldots, n)$, satisfy some stronger condition, then $R(t)$ does not need to be in $L^1(I_0)$, but in $L^p(I_0)$ for some $p > 1$.
An important extension of Theorem L for system (1.1) is the Hartman-Wintner theorem [27]. In order to state this theorem we need another two assumptions.

Assumption 1.5. There exists a positive constant δ such that for each pair of indices j and k, $(j \neq k),$

$$|D_{jk}(t)| \geq \delta > 0, \text{ for } t \in I_0,$$

where $D_{jk}(t), (j, k = 1, 2, \cdots, n)$, are defined in assumption 1.2.

Assumption 1.6. $R(t) \in L^p(I_0)$, for some constant $p \geq 1$.

A version of the Hartman-Wintner Theorem can be given as follows:

Theorem HW [27]. Under the Assumptions 1.1, 1.5 and 1.6 with $1 \leq p \leq 2$, there exists an $n \times n$ matrix $Q(t)$ such that

1. the derivative $Q'(t)$ exists, and the entries of $Q(t)$ and $Q'(t)$ are continuous in t on the interval I_0,
2. $\lim_{t \to \pm \infty} Q(t) = 0$,
3. the transformation:

$$y = [I_n + Q(t)]z$$

changes system (1.1) into

$$\frac{dz}{dt} = [\Lambda(t) + \text{diag}\{R(t)\}]z$$

on the interval I_0, where I_n is the $n \times n$ identity matrix.

Hartman-Wintner Theorem has been further generalized by Harris and Lutz [23].

Theorem HL [23]. Under the Assumptions 1.1, 1.5 and 1.6 (for any $p \geq 1$), there exists a sequence of $n \times n$ matrices $Q_i(t)$, $(i = 0, 1, \cdots, k - 1)$, such that
1. the derivatives $Q'_i(t)$ exist, and the entries of $Q_i(t)$ and $Q'_i(t)$ are continuous in t on the interval I_0 for all $i, (i = 0, 1, \ldots, k - 1),$

2. $\lim_{t \to +\infty} Q_i(t) = 0, (i = 0, 1, \ldots, k - 1),$

3. the transformation:

$$y = \prod_{i=0}^{k-1} (I + Q_i(t)) z_k$$

changes system (1.1) into

$$\frac{dz_k}{dt} = \Lambda_k(t) z_k$$

on the interval I_0, where $\Lambda_k(t)$ is a diagonal matrix which depends on all transformation matrices $Q_i(t), (i = 0, 1, \ldots, k - 1)$, and k satisfies $2^k \geq p$.

The inconvenience of the application of Theorem HL is that in order to find $\Lambda_k(t)$ one has to find $Q_i(t), \ (i = 0, 1, \ldots, k - 1)$. In the next Chapter, a different approach will be taken, and a new result Theorem 2.1.1 will be introduced, where like the results of Theorem L and Theorem HW, the asymptotic solutions will be given directly. It is worth to point out that the application range of Theorem 2.1.1 strictly includes the application range of Theorem HL.

Now let us consider another case, if

$$\lim_{t \to +\infty} D_{jk}(t) = 0, \text{ for some pair of indices } j \text{ and } k, (j \neq k),$$

then Assumption 1.5 is not satisfied. In this case, if $D_{jk}(t), (j, k = 1, 2, \ldots, n)$, still satisfy some condition which is a little stronger than Assumption 1.2, then $R(t)$ needs only to partially satisfy Assumption 1.3.

Let

$$R(t) = \{r_{jk}(t)\}_{j,k=1}^{n} \quad (1.3)$$
and
\[r_1(t) = \max_{j > k} |r_{jk}(t)|, \quad r_2(t) = \max_{j < k} |r_{jk}(t)|. \] (1.4)

Assumption 1.7. There exist two positive constants \(\delta \) and \(K \) and a constant \(\alpha, \) \(0 \leq \alpha < 1, \) independent of \(t, \) such that for each pair of indices \(j \) and \(k, \) \((j, k = 1, 2, \ldots, n; k \neq j), \) either
\[
\exp\left\{ \int_t^s D_{jk}(\tau) d\tau \right\} \leq K \exp\{-\delta(s^{1-\alpha} - t^{1-\alpha})\}, \text{ for all } s \geq t, \tag{1.5}
\]
or
\[
\exp\left\{ \int_t^s D_{jk}(\tau) d\tau \right\} \leq K \exp\{-\delta(t^{1-\alpha} - s^{1-\alpha})\}, \text{ for all } s \leq t, \tag{1.6}
\]
where \(D_{jk}(t) = \mathcal{R}(\lambda_j(t) - \lambda_k(t)), \) \((j, k = 1, 2, \ldots, n), \) are defined in Assumption 1.2.

Assumption 1.8. The matrix \(R(t) \) is continuous and satisfies:
\[|R(t)| = o(t^{-\alpha}), \text{ as } t \to +\infty, \tag{1.7} \]
and either
\[
\int_{t_0}^{+\infty} t^{-\alpha} \max_{s \geq t} [s^\alpha r_1(s)] dt < +\infty, \tag{1.8}
\]
or
\[
\int_{t_0}^{+\infty} t^{-\alpha} \max_{s \geq t} [s^\alpha r_2(s)] dt < +\infty. \tag{1.9}
\]

In [28] we proved the following theorem:

Theorem HX [28]. Under Assumptions 1.1, 1.7 and 1.8, there exists an \(n \times n \) matrix \(Q(t) \) such that

1. the derivative \(Q'(t) \) exists, and the entries of \(Q(t) \) and \(Q'(t) \) are continuous in \(t \) on the interval \(I_0, \)
2. \(\lim_{t \to +\infty} Q(t) = 0 \),

3. the transformation:

\[y = [I_n + Q(t)]z \] \hspace{1cm} (1.10)

changes systems (1.1) into

\[\frac{dz}{dt} = [\Lambda(t) + \text{diag}\{R(t)\}]z, \] \hspace{1cm} (1.11)

on the interval \(I_0 \), where \(I_n \) is the \(n \times n \) identity matrix.

In Chapter III, Theorem HX will be generalized. There we will consider the case \(D_{jk}(t) = O(1/t) \), for some \(j, k \in \{1, 2, \ldots, n\} \).

Asymptotic integration formulas for linear systems of differential equations with multiple eigenvalues for \(\lim_{t \to +\infty} A(t) \) have important application in the deficiency index problem for self-adjoint ordinary differential operators. In Chapter IV, we will apply the main result of Chapter III to the deficiency index problem for certain fourth order differential operators.
CHAPTER II

A GENERALIZATION OF THEOREM HW

2.1 Introduction and Main Theorems

In Chapter I, we learned that for the system:

\[\frac{dy}{dt} = A(t)y, \quad t \in I_0 = (t_0, +\infty), \]

(2.1)

if \(A(t) \) satisfies Assumptions 1.1, 1.5 and 1.6 (with \(p \geq 1 \)), then the asymptotic solution of (2.1) can be obtained via a sequence of linear transformations as stated in Theorem HL. In practice, however, it is sometimes very difficult to find all the transformation matrices \(Q_i(t) \) or their suitable approximations, \((i = 0, 1, \ldots, k - 1)\), on which the asymptotic integration formula depends. In this Chapter we will take a different approach and give another generalization of Theorem HW from Chapter I. This will provide the asymptotic integration formula directly.

Assumption 2.1.1. The matrix \(A(t) \) is in the form

\[A(t) = \Lambda(t) + P(t) + R(t), \]

where \(\Lambda(t) = \text{diag}\{\lambda_1(t), \lambda_2(t), \ldots, \lambda_n(t)\} \) with \(\lambda_j(t), \quad (j = 1, 2, \ldots, n) \), continuous on \(I_0 \), and \(R(t) \in L^1(I_0) \).

Assumption 2.1.2. There exist two positive constants \(K \) and \(\delta \) such that for each pair of indices \(j \) and \(k \), \((j, k = 1, 2, \ldots, n; k \neq j)\), we have

\[\exp\left\{ \int_t^s D_{jk}(\tau)d\tau \right\} \leq K \exp\{-\delta(s - t)\}, \quad \text{for } s \geq t \text{ and } j > k, \]

(2.2)

and

\[\exp\left\{ \int_t^s D_{jk}(\tau)d\tau \right\} \leq K \exp\{-\delta(t - s)\}, \quad \text{for } s \leq t \text{ and } j < k, \]

(2.3)
where \(D_{jk}(t) = R(\lambda_j(t) - \lambda_k(t)), \ (j, k = 1, 2, \ldots, n) \), are defined in Assumption 1.2.

Assumption 2.1.3. The matrix \(P(t) \) satisfies:

\[
||P(t)|| \leq p(t), \text{ for some } p(t) \in L^m(I_0), \ m \geq 1.
\]

Theorem 2.1.1. Under Assumptions 2.1.2, 2.1.3 and 2.1.1 with \(R(t) \equiv 0 \), there exists a linear transformation:

\[
y = [I_n + T(t)]z, \quad (2.4)
\]

with \(T(t) = \{T_{jk}(t)\} \) and \(T_{jj}(t) = 0 \), for all \(j \), such that

1. for every pair of indices \(j \) and \(k \), \((j \neq k) \), the derivative \(T_{jk}'(t) \) exists, and both \(T_{jk}(t) \) and \(T_{jk}'(t) \) are continuous on the interval \(I_0 \);

2. \(\lim_{t \to +\infty} T_{jk}(t) = 0 \), \((j \neq k) \);

3. the transformation (2.4) reduces the system

\[
\frac{dy}{dt} = [A(t) + P(t)]y \quad (2.5)
\]

into

\[
\frac{dz_j}{dt} = [\lambda_j(t) + p_{jj}(t) + \sum_{h \neq j} p_{jh}(t)T_{hj,r}(t) + d_j(t)]z_j, \ (j = 1, 2, \ldots, n), \quad (2.6)
\]

where \(p_{ij}(t), \ (i, j = 1, 2, \ldots, n) \), denote the entries of the \(n \times n \) matrix \(P(t) \);

\[
d_j(t) = \sum_{h \neq j} p_{jh}(t)T_{hj}(t) - \sum_{h \neq j} p_{jh}(t)T_{hj,r}(t) \in L^1(I_0), \text{ for all } j, \text{ and } T_{jl,r}(t)
\]

which are approximations of \(T_{jl} \), \(j, l = 1, 2, \ldots, n, \ j \neq l \), are defined as follows:
\[
\begin{aligned}
\left\{ \begin{array}{l}
T_{ji,k+1}(t) = \int_{T_{ji,k}(t)}^t \exp \left\{ \int_{T_{ji,k}(s)}^t (\lambda_j(\tau) - \lambda_i(\tau))d\tau \right\} U_{ji}(s, T_k(s))ds, \quad \text{with} \\
T_{ji,0}(t) = 0, \quad \text{and} \\
U_{ji}(t, T_k(t)) = p_{ji}(t) + \sum_{h\neq l} p_{jh}(t) T_{hl,k}(t) \\
- T_{ji,k}(t)[p_{ll}(t) + \sum_{h\neq l} p_{lh}(t) T_{hl,k}(t)],
\end{array} \right.
\end{aligned}
\]

with \(T_k \) to be approximations of \(T(t) \), \(k = 0, 1, 2, \ldots, r - 1 \), and \(r \) to be the smallest non-negative integer such that \(r \geq m - 2 \), and \(\tau_{ji} \) to be defined as the follows:

\[
\tau_{ji} = \begin{cases}
 t_0, & \text{if } j < l, \\
 +\infty, & \text{if } j > l.
\end{cases}
\]

In order to obtain a more general theorem, we need to first establish:

Lemma 2.1.1. If there exists an \(n \times n \) transformation matrix \(G(t) \) such that: (i) the derivative \(G'(t) \) exists, and the entries of \(G(t) \) and \(G'(t) \) are continuous in \(t \) on the interval \(I_0 \), (ii) \(\lim_{t \to +\infty} G(t) = 0 \), (iii) the transformation: \(z = [I_n + G(t)]w \) changes systems \(z' = [A(t) + P(t)]z \) into

\[
\frac{dw}{dt} = \tilde{A}(t)w,
\]

where \(\tilde{A}(t) \) is a diagonal matrix satisfying Assumption 1.2, then under Assumption 2.1.1, there exists an \(n \times n \) transformation matrix \(Q(t) \) such that:

1. the derivative \(Q'(t) \) exists, and the entries of \(Q(t) \) and \(Q'(t) \) are continuous in \(t \) on the interval \(I_0 \),

2. \(\lim_{t \to +\infty} Q(t) = 0 \),

3. the transformation:

\[
y = [I_n + Q(t)]z
\]
changes system (2.1) into

\[\frac{dz}{dt} = [\Lambda(t) + P(t)]z, \tag{2.9} \]

on the interval \(I_0 \).

The proofs of the Theorem 2.1.1 and Lemma 2.1.1 will be given in Section 2.3 and Section 2.4, respectively. Combine Lemma 2.1.1 and Theorem 2.1.1, we directly have:

Theorem 2.1.2. Under Assumptions 2.1.1, 2.1.2, and 2.1.3, there exist \(n \times n \) matrices \(Q(t) \) and \(T(t) = \{ T_{jk}(t) \} \) with \(T_{jj}(t) = 0 \), for all \(j \), such that

1. the derivatives \(Q'(t) \) and \(T'(t) \) exist, and the entries of \(Q(t) \), \(T(t) \), \(Q'(t) \) and \(T'(t) \) are all continuous in \(t \) on the interval \(I_0 \),

2. \(\lim_{t \to +\infty} Q(t) = 0 \), and \(\lim_{t \to +\infty} T(t) = 0 \),

3. the transformation:

\[y = [I_n + Q(t)][I_n + T(t)]z \tag{2.10} \]

changes systems (2.1) into

\[\frac{dz_j}{dt} = [\lambda_j(t) + p_{jj}(t) + \sum_{h \neq j} p_{jh}(t)T_{hj,r}(t) + d_j(t)]z_j, \quad j = 1, \ldots, n, \tag{2.11} \]

where \(p_{ij}(t) \), \((i, j = 1, 2, \ldots, n) \), denote the entries of \(n \times n \) matrix \(P(t) \); \(d_j(t) \in L^1(I_0) \), for all \(j \), and \(T_{hj,r} \) are defined as in (2.7).

Remark for Assumption 2.1.2. If \(D_{jk}(t) \) satisfy Assumption 1.5, i.e. \(|D_{jk}(t)| \geq \delta > 0 \), then Assumption 2.1.2 follows. On the other hand Assumption 2.1.2 gives the separation of real parts of \(\lambda_j(t) \) in the average sense. For instance, if \(\lambda_1(t) = 1 \)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
and \(\lambda_2(t) = \sin(t) \), then Assumption 1.5 is not satisfied, but Assumption 2.1.2 is satisfied, since

\[
\exp\{\int_t^s D_{21}(\tau)d\tau\} \leq e^2 e^{-(s-t)}, \quad \text{for } s \geq t,
\]

and

\[
\exp\{\int_t^s D_{12}(\tau)d\tau\} \leq e^2 e^{-(t-s)}, \quad \text{for } s \leq t.
\]

2.2 Examples

Three examples will now be given to show that the above new Theorems are often much simpler to apply than the classical results and have a wider range of application.

Example 1. Consider the differential equation:

\[
x'' - (1 + \phi(t))x = 0, \quad \phi(t) \in L^m(t \geq t_0).
\]

It can be changed into the following equivalent 2 \times 2 system of differential equations:

\[
y' = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} -\phi & -\phi \\ \phi & \phi \end{bmatrix} y,
\]

by means of

\[
\begin{bmatrix} x \\ x' \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} y.
\]

For \(m = 3 \), the asymptotic solutions of differential equation (2.12) have been given by Bellman [2]. The method which Bellman used is complicated. In fact Bellman himself wrote that his method is in practice difficult to use because the algebraic complexities become overwhelming for larger \(m \) ([2], p.133).

The above differential equation with \(m = 3 \) has also been studied by Harris and Lutz as an application of Theorem HL [23]. The treatment there is not simple
either, and becomes more difficult as m gets larger. By comparison to the two approaches above, Theorem 2.1.1 is easy to apply, as will now be shown.

Case 1. If \(\phi(t) \in L^3(I_0) \), by Theorem 2.1.1 with \(r = 1 \), we have linear transformation \(y_1 = z_1 + T_{12}z_2 \) and \(y_2 = z_2 + T_{21}z_1 \), such that

\[
\frac{dz_1}{dt} = \frac{1}{2} \left[-2 - \phi(t) - \phi(t)T_{21,1}(t) + d_1(t) \right] z_1,
\]

\[
\frac{dz_2}{dt} = \frac{1}{2} \left[2 + \phi(t) + \phi(t)T_{12,1}(t) + d_2(t) \right] z_2,
\]

where \(d_1(t), d_2(t) \in L^1(I_0) \),

\[
T_{21,1}(t) = \frac{1}{2} \int_{t_0}^t e^{-2(s-t)} \phi(s) ds,
\]

(2.13)

and

\[
T_{12,1}(t) = -\frac{1}{2} \int_{t_0}^t e^{-2(t-s)} \phi(s) ds.
\]

(2.14)

Since

\[
\begin{bmatrix}
 x \\
 x'
\end{bmatrix} = \begin{bmatrix}
 1 & 1 \\
 -1 & 1
\end{bmatrix} \begin{bmatrix}
 1 & o(1) \\
 o(1) & 1
\end{bmatrix} \begin{bmatrix}
 z_1 \\
 0
\end{bmatrix},
\]

we have

\[
x_1 = (1 + o(1)) \exp \{ \int_{t_0}^t \left[-1 - \frac{1}{2} \phi(s) - \frac{1}{4} \phi(s) \int_{t_0}^{s} e^{-2(r-s)} \phi(r) dr \right] ds \},
\]

and

\[
x_2 = (1 + o(1)) \exp \{ \int_{t_0}^t \left[1 + \frac{1}{2} \phi(s) - \frac{1}{4} \phi(s) \int_{t_0}^{s} e^{-2(s-\tau)} \phi(\tau) d\tau \right] ds \}.
\]

Case 2. If \(\phi(t) \in L^4(I_0) \), by Theorem 2.1.1 with \(r = 2 \), we have linear transformation \(y_1 = z_1 + T_{12}z_2 \) and \(y_2 = z_2 + T_{21}z_1 \), such that

\[
\frac{dz_1}{dt} = \frac{1}{2} \left[-2 - \phi(t) - \phi(t)T_{21,2}(t) + d_1(t) \right] z_1,
\]

\[
\frac{dz_2}{dt} = \frac{1}{2} \left[2 + \phi(t) + \phi(t)T_{12,2}(t) + d_2(t) \right] z_2,
\]
where \(d_1(t) \), \(d_2(t) \) \(\in L^1(I_0) \),

\[
T_{21,2}(t) = \frac{1}{2} \int_{t_0}^t e^{-2(t-s)} \phi(s) ds + \frac{1}{2} \int_{t_0}^t e^{-2(t-s)} \phi(s) T_{21,1}(s) ds
\]

(2.15)

and

\[
T_{12,2}(t) = -\frac{1}{2} \int_{t_0}^t e^{-2(t-s)} \phi(s) ds - \frac{1}{2} \int_{t_0}^t e^{-2(t-s)} \phi(s) T_{12,1}(s) ds.
\]

(2.16)

\[
T_{12,3}(t) = -\frac{1}{2} \int_{t_0}^t e^{-2(t-s)} \phi(s) T_{12,1}(s) ds
\]

(2.17)

\[
T_{12,3}(t) = -\frac{1}{2} \int_{t_0}^t e^{-2(t-s)} \phi(s) T_{12,1}(s) ds.
\]

(2.18)

Note that since

\[
\phi(t) \int_{t_0}^t e^{-2(t-s)} \phi(s) T_{21,1}(s) ds \quad \text{and} \quad \phi(t) \int_{t_0}^t e^{-2(t-s)} \phi(s) T_{12,1}(s) ds \in L^1(I_0),
\]

we have

\[
x_1 = (1 + o(1)) \exp \left\{ \int_{t_0}^t \left[-1 - \frac{1}{2} \phi(s) - \frac{1}{4} \phi(s) \int_{t_0}^s e^{-2(t-s)} \phi(\tau) ds \right] \right\}
\]

and

\[
x_2 = (1 + o(1)) \exp \left\{ \int_{t_0}^t \left[1 + \frac{1}{2} \phi(s) - \frac{1}{4} \phi(s) \int_{t_0}^s e^{-2(t-s)} \phi(\tau) ds \right] \right\},
\]

where \(T_{21,1}(t) \) and \(T_{12,1}(t) \) are defined in (2.13) and (2.14), respectively.

Case 3. In general, if \(\phi \in L^m(I_0) \), for \(m > 2 \), by Theorem 2.1.1, with \(r \) taken to be the smallest integer such that \(r \geq m - 2 \), we have the following asymptotic solution:

\[
x_1 = (1 + o(1)) \exp \left\{ \int_{t_0}^t \left[-1 - \frac{1}{2} \phi(s) - \frac{1}{2} \phi(s) T_{21,r}(s) \right] \right\}
\]

and

\[
x_2 = (1 + o(1)) \exp \left\{ \int_{t_0}^t \left[1 + \frac{1}{2} \phi(s) + \frac{1}{2} \phi(s) T_{12,r}(s) \right] \right\},
\]

where \(T_{21,r}(t) \) and \(T_{12,r}(t) \) are defined as follows:

\[
T_{21,k+1}(t) = \frac{1}{2} \int_{t_0}^t e^{-2(t-s)} \phi(s) ds + 2\phi(s) T_{21,k}(s) + \phi(s) T_{21,k}(s) ds
\]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
\[T_{12,k+1}(t) = -\frac{1}{2} \int_0^t e^{-2(t-s)}[\phi(s) + 2\phi(s)T_{12,k}(s) + \phi(s)T_{12,k}^2(s)] ds, \]

\(k = 1, 2, \ldots, r - 1, \) and \(T_{21,1}(t) \) and \(T_{12,1}(t) \) are defined in (2.13) and (2.14), respectively.

Example 2. Consider the following system of differential equations:

\[
\begin{pmatrix}
y_1 \\
y_2
\end{pmatrix}' = \begin{pmatrix}
sint & \phi_1(t) \\
\phi_2(t) & 1
\end{pmatrix} \begin{pmatrix}
y_1 \\
y_2
\end{pmatrix}, \quad t \geq 0,
\]

(2.19)

where \(\phi_1(t), \phi_2(t) \in L^m(I_0) \), for some \(m > 1 \). As the diagonal elements coincide at \(t = (2k + \frac{1}{2})\pi, \) (k: non-negative integers), Theorem HL is not applicable, but Assumption 2.1.2 is satisfied for \(\lambda_1 = \text{sint} \), and \(\lambda_2 = 1 \), so the asymptotic solution of (2.19) can be obtained by Theorem 2.1.1.

Case 1. If \(\phi_1(t), \phi_2(t) \in L^2(I_0) \), by Theorem 2.1.1 with \(r = 0 \), we know that the asymptotic solution of (2.19) is:

\[
\begin{pmatrix}
y_1 \\
y_2
\end{pmatrix} = \begin{pmatrix}
1 & o(1) \\
o(1) & 1
\end{pmatrix} \begin{pmatrix}
(1 + o(1))e^{-\text{sint}+1} & 0 \\
0 & (1 + o(1))e^t
\end{pmatrix}.
\]

(2.20)

Case 2. If \(\phi_1(t), \phi_2(t) \in L^3(I_0) \), by Theorem 2.1.1 with \(r = 1 \), we have linear transformation \(y_1 = z_1 + T_{12,1}z_2 \) and \(y_2 = z_2 + T_{21,1}z_1 \) so that

\[
\frac{dz_1}{dt} = [\text{sint} + \phi_1(t)T_{21,1}(t) + d_1(t)]z_1,
\]

\[
\frac{dz_2}{dt} = [1 + \phi_2(t)T_{12,1}(t) + d_2(t)]z_2,
\]

where \(d_1(t), \ d_2(t) \in L^1(I_0), \)

\[
T_{21,1}(t) = \int_{-\infty}^t e^\int_0^t(1-\text{sint})d\tau \phi_2(s) ds
\]

(2.21)
Thus the asymptotic solution of (2.19) is:

\[
\begin{bmatrix}
y_1 \\
y_2
\end{bmatrix} = \begin{bmatrix}
1 & o(1) \\
o(1) & 1
\end{bmatrix} \begin{bmatrix}
(1 + o(1))w_1 \\
0
\end{bmatrix},
\]

(2.23)

where \(w_1(t) \), \(w_2(t) \) are:

\[
w_1(t) = \exp\{\int_0^t \sin s + \phi_1(s)T_{21,1}(s)ds\},
\]

and

\[
w_2(t) = \exp\{\int_0^t 1 + \phi_2(s)T_{12,1}(s)ds\}.
\]

Example 3. Consider the following system of differential equations

\[
\begin{bmatrix}
y_1 \\
y_2
\end{bmatrix}' = \begin{bmatrix}
-1 & t^{-\frac{3}{4}}\sin(t + t^{-\frac{1}{4}}) \\
t^{-\frac{3}{4}}\cos(t + t^{-\frac{1}{4}}) & 1
\end{bmatrix} \begin{bmatrix}
y_1 \\
y_2
\end{bmatrix}, \quad t \geq 1.
\]

(2.24)

Since

\[
\sin(t + t^{-\frac{1}{4}}) - \sin t = O(t^{-\frac{1}{4}}), \quad \text{and} \quad \cos(t + t^{-\frac{1}{4}}) - \cos t = O(t^{-\frac{1}{4}}),
\]

we can rewrite (2.24) as

\[
\begin{bmatrix}
y_1 \\
y_2
\end{bmatrix}' = \begin{bmatrix}
-1 & t^{-\frac{3}{4}}\sin t \\
t^{-\frac{3}{4}}\cos t & 1
\end{bmatrix} + R(t) \begin{bmatrix}
y_1 \\
y_2
\end{bmatrix}, \quad t \geq 1,
\]

(2.25)

where the matrix \(R(t) \) is \(2 \times 2 \) and in \(L^1(I_0) \).
Since $t^{-\frac{3}{2}}\sin t$ and $t^{-\frac{3}{5}}\cos t \in L^2(I_0)$, by Theorem 2.1.2 with $r = 1$, there exist $Q(t)$ and $T(t)$ with $\lim_{t \to \infty} Q(t) = 0$ and $\lim_{t \to \infty} T(t) = 0$ such that the linear transformation $y = [I_2 + Q(t)][I_2 + T(t)]z$ changes (2.24) into:

\[
\begin{align*}
\frac{dz_1}{dt} &= [-1 + (t^{-\frac{3}{2}}\sin t)T_{21,1}(t) + d_1(t)]z_1, \\
\frac{dz_2}{dt} &= [1 + (t^{-\frac{3}{5}}\cos t)T_{12,1}(t) + d_2(t)]z_2,
\end{align*}
\]

(2.26)

(2.27)

where

\[
T_{21,1}(t) = \int_{+\infty}^t e^{-2(s-t)}s^{-\frac{3}{2}}\cos s ds = \frac{1}{5}t^{-\frac{3}{5}}(\sin t - 2\cos t) + r_{21}(t),
\]

(2.28)

with $r_{21}(t) \in L^1(I_0)$, and

\[
T_{12,1}(t) = \int_0^t e^{-2(t-s)}s^{-\frac{2}{5}}\sin s ds = \frac{1}{5}t^{-\frac{2}{5}}(2\sin t - \cos t) + r_{12}(t),
\]

(2.29)

with $r_{12}(t) \in L^1(I_0)$. So the asymptotic solution of (2.24) is:

\[
\begin{bmatrix}
y_1 \\
y_2
\end{bmatrix} = \begin{bmatrix}
1 + o(1) & o(1) \\
o(1) & 1 + o(1)
\end{bmatrix} \begin{bmatrix}
(1 + o(1))w_1 \\
0
\end{bmatrix} = (C_1 + o(1))\exp\{\frac{7}{12}t^{\frac{8}{5}}\}w_1,
\]

(2.30)

where $w_1(t), w_2(t)$ are:

\[
w_1(t) = \exp\{\int_1^t [-1 + s^{-\frac{3}{2}}\sin t \cdot \frac{1}{5}s^{-\frac{3}{5}}(\sin s - 2\cos s)] ds\}
= (C_1 + o(1))\exp\{-t + \frac{7}{12}t^{\frac{8}{5}}\},
\]

and

\[
w_2(t) = \exp\{\int_1^t [1 + s^{-\frac{3}{5}}\cos s \cdot \frac{1}{5}s^{-\frac{2}{5}}(2\sin s - \cos s)] ds\}
= (C_2 + o(1))\exp\{t - \frac{7}{35}t^{\frac{8}{5}}\},
\]

with C_1 and C_2 to be two constants.
2.3 The Proof of Theorem 2.1.1

The proof of Theorem 2.1.1 is based on a result obtained by Y. Sibuya [33]. Suppose that the system (2.1) is in the form

\[
\frac{dy_j}{dt} = A_j(t)y_j + \sum_{k=1}^{\sigma} B_{jk}(t)y_k, \quad (j = 1, 2, \ldots, \sigma), \tag{2.31}
\]

where \(y_j\) are \(n_j\)-column vectors, \(A_j(t)\) and \(B_{jk}(t)\) are \(n_j \times n_j\) and \(n_j \times n_k\) matrices, respectively, where \(n_1 + n_2 + \ldots + n_\sigma = n\). Let \(G_j(t, s)\) be the \(n_j \times n_j\) matrix such that

\[
\begin{cases}
G_j'(t, s) = A_j(t)G_j(t, s), \\
G_j(s, s) = I_{n_j},
\end{cases} \quad (j = 1, 2, \ldots, \sigma)
\]

for \(t, s \in I_0\). Assume the following:

Assumption 2.3.1. There exist two positive constants \(K\) and \(\delta\) such that for any \(n_j \times n_k\) matrix \(C_{jk}\), we have

\[
\|G_j(t, s)C_{jk}G_k(t, s)^{-1}\| \leq K e^{K(t-s)}\|C_{jk}\|, \quad \text{for } t \leq s, \ j > k,
\]

and

\[
\|G_j(t, s)C_{jk}G_k(t, s)^{-1}\| \leq K e^{-K(t-s)}\|C_{jk}\|, \quad \text{for } t \geq s, \ j < k,
\]

for \(t, s \in I_0\). Here \(\| \cdot \|\) denote the Euclidian norm.

Assumption 2.3.2. There exists a function \(f(t)\) such that

\[
\|B_{jk}(t)\| \leq f(t), \quad (j, k = 1, 2, \ldots, \sigma),
\]

and

\[
\sup_{p \geq t}(1 + p - t)^{-1} \int_t^p f(\tau)d\tau \to 0, \quad \text{as } t \to +\infty.
\]
Y. Sibuya [33] proved the following:

Theorem S [33]. Under the Assumptions 2.3.1 and 2.3.2, there exists a linear transformation:

\[
y_j = z_j + \sum_{k \neq j} T_{jk}(t)z_k, \quad (j = 1, 2, \cdots, \sigma),
\]

(2.32)

with \(n_j \times n_k\) matrices \(T_{jk}(t)\), such that

1. for every pair of indices \(j\) and \(k\), \((j \neq k)\), the derivative \(T'_{jk}(t)\) exists, and the entries of \(T_{jk}(t)\) and \(T'_{jk}(t)\) are continuous on the interval \(I_0\);

2. \(\lim_{t \to +\infty} T_{jk}(t) = 0, \quad (j \neq k)\);

3. the transformation (2.32) reduces the system (2.31) to

\[
\frac{dz_j}{dt} = \left[A_j(t) + B_{jj}(t) + \sum_{h \neq j} B_{jh}(t)T_{kh}(t) \right] z_j, \quad (j = 1, 2, \cdots, \sigma).
\]

(2.33)

From the proof of this theorem, we know

\[
T_{jl}(t) = \int_{\tau_{jl}}^t \exp\left\{ \int_{s}^{t} A_j(\tau)d\tau \right\} U_{jl}(s, T(s)) \exp\left\{ - \int_{s}^{t} A_l(\tau)d\tau \right\} ds, \quad j \neq l,
\]

where

\[
\tau_{jl} = \begin{cases} +\infty, & \text{if } j > l, \\ t_0, & \text{if } j < l, \end{cases}
\]

and

\[
U_{jl}(t, T) = B_{jl}(t) + \sum_{h \neq l} B_{jh}(t)T_{hl}(t) - T_{jl}(t)[B_{ll}(t) + \sum_{h \neq l} B_{lh}(t)T_{hl}(t)], \quad j \neq l,
\]

for \(t \in I_0\).

If all \(A_j(t), \quad (j = 1, 2, \cdots, \sigma)\), are \(1 \times 1\) matrices (i.e. \(\sigma = n\)), and \(A_j(t) = \lambda_j(t)\), for all \(j\), then we have:
Theorem S'. Under the Assumptions 2.3.1 and 2.3.2, there exists a linear transformation:

\[y_j = z_j + \sum_{k \neq j} T_{jk}(t)z_k, \quad (j = 1, 2, \ldots, n), \quad (2.34) \]

with scalars \(T_{jk}(t) \), such that

1. for every pair of indices \(j \) and \(k \) \((j \neq k)\), the derivative \(T_{jk}(t) \) exists, and both \(T_{jk}(t) \) and \(T_{jk}(t) \) are continuous on the interval \(I_0 \);

2. \(\lim_{t \to +\infty} T_{jk}(t) = 0 \), \((j \neq k)\);

3. the transformation (2.34) reduces the system (2.31) to

\[\frac{dz_j}{dt} = \left[A_j(t) + B_{jj}(t) + \sum_{h \neq j} b_{jh}(t)T_{hi}(t) \right] z_j, \quad (j = 1, 2, \ldots, n), \]

where \(b_{ij}(t) \) denotes the 1 x 1 matrix \(B_{ij}(t) \), \((i, j = 1, 2, \ldots, n)\).

In this case, we have

\[T_{jl}(t) = \int_{\tau_{jl}}^{t} \exp\left\{ \int_{s}^{t} (\lambda_j(\tau) - \lambda_l(\tau))d\tau \right\} U_{jl}(s, T(s))ds, \quad j \neq l, \]

where

\[\tau_{jl} = \begin{cases} +\infty, & \text{if } j > l, \\ t_0, & \text{if } j < l, \end{cases} \]

and

\[U_{jl}(t, T) = b_{jl}(t) + \sum_{h \neq l} b_{jh}(t)T_{hl}(t) - T_{jl}(t)\left[b_{ll}(t) + \sum_{h \neq l} b_{hl}(t)T_{hl}(t) \right], \quad j \neq l, \]

for \(t \in I_0 \).

From Theorem S', we know that the asymptotic solution of (2.31) depends on \(T_{jk} \), \((j, k = 1, 2, \ldots, n)\), but to find \(T_{jk} \), \((j, k = 1, 2, \ldots, n)\), we need to solve a nonlinear system of integral equations which is at present very difficult. An
important fact is that to find the asymptotic solution of (2.31) we need only to find suitable approximations of T_{jk}, $(j, k = 1, 2, \ldots, n)$, and these approximations can be easily obtained by finite iterations. This is the idea behind the proof of Theorem 2.1.1.

Proof of Theorem 2.1.1. Under Assumption 2.1.2, Assumption 2.3.1 is satisfied. Since $p(t) \in L^m(I_0)$, by Hölder's inequality, we have

$$\sup_{x \geq t} (1 + x - t)^{-1} \int_t^x p(\tau) d\tau < \sup_{x \geq t} \left[\int_t^x p^m(\tau) d\tau \right]^\frac{1}{m} \to 0, \text{ as } t \to +\infty,$$

that is Assumption 2.3.2 is satisfied. So by Theorem S', it follows that there exists a linear transformation:

$$y_j = z_j + \sum_{k \neq j} T_{jk}(t) z_k, \quad (j = 1, 2, \ldots, n), \quad (2.35)$$

with scalars $T_{jk}(t)$, such that

1. for every pair of indices j and k, $(j \neq k)$, the derivative $T'_{jk}(t)$ exists, and both $T_{jk}(t)$ and $T'_{jk}(t)$ are continuous on the interval I_0;

2. $\lim_{t \to +\infty} T_{jk}(t) = 0, \quad (j \neq k);$

3. the transformation (2.35) reduces the system

$$\frac{dy}{dt} = [\Lambda(t) + P(t)]y \quad (2.36)$$

to

$$\frac{dz_j}{dt} = [\lambda_j(t) + p_{jj}(t) + \sum_{k \neq j} p_{jk}(t) T_{kj}(t)] z_j, \quad (j = 1, 2, \ldots, n), \quad (2.37)$$

where $p_{ij}(t), (i, j = 1, 2, \ldots, n)$, denote the entries of $n \times n$ matrix $P(t)$,

$$T_{jl}(t) = \int_{\tau_l}^t \exp\{ \int_s^t (\lambda_j(\tau) - \lambda_l(\tau)) d\tau \} U_{jl}(s, T(s)) ds, \quad j \neq l, \quad (2.38)$$
and

\[U_{jl}(t, T) = p_{jl}(t) + \sum_{h \neq l} p_{jh}(t)T_{hl}(t) - T_{jl}(t)[p_{ll}(t) + \sum_{h \neq l} p_{lh}(t)T_{hl}(t)]. \] (2.39)

Let

\[
\begin{cases}
T_{jl,k+1}(t) = \int_{T_{jl}}^{t} \exp\{\int_{s}^{t} (\lambda_j(\tau) - \lambda_l(\tau))d\tau\}U_{jl}(s, T_k(s))ds, \\
T_{jl,0}(t) = 0, \\
U_{jl}(t, T_k(t)) = p_{jl}(t) + \sum_{h \neq l} p_{jh}(t)T_{hl,k}(t) - T_{jl,k}(t)[p_{ll}(t) + \sum_{h \neq l} p_{lh}(t)T_{hl,k}(t)],
\end{cases}
\] (2.40)

for \(j \neq l \) and \(k = 0, 1, 2, \ldots, r - 1 \), where \(r \) is the smallest integer such that \(r \geq m - 2 \), and \(m \) is defined in Assumption 2.1.3. From (3.39) and (3.40), we have:

\[
T_{jl}(t) - T_{jl,k+1}(t) = \int_{T_{jl}}^{t} \exp\{\int_{s}^{t} (\lambda_j(\tau) - \lambda_l(\tau))d\tau\}[U_{jl}(s, T_k(s)) - U_{jl}(s, T_k(s))]ds,
\]

where \(j \neq l \) and

\[
U_{jl}(t, T(t)) - U_{jl}(t, T_k(t)) = \sum_{l \neq h} p_{jh}(t)(T_{hl}(t) - T_{hl,k}(t)) - (T_{jl}(t) - T_{jl,k}(t))p_{ll}(t) + (T_{jl,k}(t) - T_{jl}(t))\sum_{h \neq l} p_{lh}(t)T_{hl,k}(t) + T_{jl}(t)\sum_{h \neq l} p_{lh}(t)(T_{hl,k}(t) - T_{hl}(t)). \] (2.41)

In order to complete the proof, we establish:

Lemma 2.3.1. Under Assumptions 2.1.2 and 2.1.3, we have:

1. \(T_{jl}(t) \) is in \(L^m(I_0) \), for \(j, l = 1, 2, \ldots, n, \ j \neq l \) and for \(m \) defined in Assumption 2.1.3.

2. If

\[
|T_{jl}(t) - T_{jl,k}(t)| \in L^r(I_0), \] (2.42)
for all \(j, l = 1, 2, \ldots, n \), then

\[
|T_{ji}(t) - T_{ji,k+1}(t)| \in L^{\frac{m}{m+1}}(I_0),
\]

(2.43)

for all \(j, l = 1, 2, \ldots, n \).

Proof of Lemma 2.3.1. We first prove conclusion 1. Since \(\lim_{t \to +\infty} T_{hl}(t) = 0 \) and \(T_{hl}(t) \) are continuous on \(I_0 \), for all \(h, l = 1, 2, \ldots, n \), and \(||P(t)|| \leq p(t) \) with \(p(t) \in L^m(I_0) \), from (2.39), we have

\[
|U_{ji}(t, T)| \in L^m(I_0), \ j, l = 1, 2, \ldots, n, \ j \neq l.
\]

In case \(j > l \), we have

\[
|T_{ji}(t)| = |\int_t^t \exp\{\int_s^t [\lambda_j(\tau) - \lambda_l(\tau)]d\tau\}U_{ji}(s, T(s))ds|
\]

\[
\leq \int_t^{+\infty} e^{\delta(t-s)}|U_{ji}(s, T(s))|ds = \int_0^{+\infty} e^{-\delta x}|U_{ji}(x + t, T(x + t))|dx.
\]

(2.44)

Let

\[
f(x) = \begin{cases}
 e^{-\delta x}, & \text{if } x > 0, \\
 0, & \text{if } x \leq 0.
\end{cases}
\]

In case \(j < l \), we have

\[
|T_{ji}(t)| = |\int_t^t \exp\{\int_s^t [\lambda_j(\tau) - \lambda_l(\tau)]d\tau\}U_{ji}(s, T(s))ds|
\]

\[
\leq \int_t^0 e^{-\delta(t-s)}|U_{ji}(s, T(s))|ds = \int_0^{-t} e^{\delta x}|U_{ji}(x + t, T(x + t))|dx.
\]

(2.45)

Let

\[
f(x) = \begin{cases}
 e^{\delta x}, & \text{if } x < 0, \\
 0, & \text{if } x \geq 0.
\end{cases}
\]

Set \(U_{ji}(t, T(t)) = 0 \), for \(t \in I_0 \), \(j, l = 1, 2, \ldots, n \), then in both cases \(j > l \) and \(j < l \), we have:

\[
|T_{ji}(t)| \leq \int_{-\infty}^{+\infty} f(x)|U_{ji}(x + t, T(x + t))|dx.
\]

(2.46)
By these extensions of $U_j(t)$ and $f(t)$, in both cases the function $f(x) \in L^1(-\infty, \infty)$, and $U_j(x+t,T(x+t)) \in L^m(-\infty, \infty)$, for all $j, l = 1, 2, \ldots, n$, and for each fixed $x \in (-\infty, \infty)$. Thus, by the following Minkowski inequality([20], Theorem 203):

$$\left\{ \int_{-\infty}^{+\infty} \left[\int_{-\infty}^{+\infty} f(x,y)dy \right]^p dx \right\}^{1/p} \leq \int_{-\infty}^{+\infty} \left\{ \int_{-\infty}^{+\infty} [f(x,y)]^p dx \right\}^{1/p} dy,$$

for $p > 1$, and $f(x,y) \geq 0$, we have

$$\left(\int_{-\infty}^{+\infty} |T_j(t)|^m dt \right)^{1/m} \leq \int_{-\infty}^{+\infty} \left\{ \int_{-\infty}^{+\infty} |U_{jl}(x+t,T(x+t))|^m dt \right\}^{1/m} f(x) dx \leq \|f\|_m \|U_{jl}\|_m. \quad (2.47)$$

Hence

$$|T_{ji}(t)| \in L^m(I_0), \text{ for all } j, l = 1, 2, \ldots, n, \ j \neq l.$$

To prove conclusion 2, first notice that by mathematical induction and Hölder’s inequality we have:

$$T_{ji,k}(t) \to 0, \text{ as } t \to \infty, \text{ for all } j, l = 1, 2, \ldots, n, \ k = 1, 2, \ldots.$$

Since

$$T_{ji,k}(t) \to 0, \ T_{ji}(t) \to 0, \text{ as } t \to \infty, \text{ and } |p_{ji}(t)| \in L^m(I_0),$$

for all $j, l = 1, 2, \ldots, n, \ k = 1, 2, \ldots$, from (2.41), if $|T_{ji}(t) - T_{ji,k}(t)| \in L^s(I_0)$, then by Hölder’s inequality, we have

$$|U_{ji}(t,T(t)) - U_{ji}(t,T_k(t))| \in L^{\frac{m}{s+m}}(I_0). \quad (2.48)$$

As in the proof for conclusion 1, from (2.48) we thus have conclusion 2.

The proof of Theorem 2.1.1 will be completed if we can show that

$$d_j = \sum_{h \neq j} p_{jh}(t)(T_{hi}(t) - T_{hi,r}(t)) \in L^1(I_0), \quad (2.49)$$
for all \(j = 1, 2, \ldots, n \), where \(r \) is the smallest integer such that \(r \geq m - 2 \). Since \(T_{ji,0}(t) = 0 \), for all \(j, l = 1, 2, \ldots, n \), (2.49) follows from Lemma 2.3.1 immediately.

\[\square \]

Remark. Notice that for \(1 < m \leq 2 \), we have \(r = 0 \) and

\[\sum_{h \neq j} p_{jh}(t)T_{hj,r}(t) = 0, \]

for all \(j, l = 1, 2, \ldots, n \), so Theorem 2.1.1 includes Theorem HW as a special case, in fact, in this case, we have

\[\sum_{h \neq j} p_{jh}(t)T_{hj}(t) \in L^1(I_0), \]

for all \(j, l = 1, 2, \ldots, n \).

2.4 The Proof of Lemma 2.1.1

The proof is to be given in four steps.

STEP 1: By differentiating both sides of (2.8) and by (2.1), we obtain

\[\frac{dQ}{dt}z + [I_n + Q] \frac{dz}{dt} = [\Lambda(t) + P(t) + R(t)][I_n + Q]z. \] (2.50)

Hence if \(Q'(t) \) exists, then by (2.9), \(Q \) should satisfy the linear differential equation:

\[\frac{dQ}{dt} = [\Lambda(t) + P(t) + R(t)][I_n + Q] - [I_n + Q][\Lambda(t) + P(t)], \] (2.51)

or, equivalently,

\[\frac{dQ}{dt} = [\Lambda(t) + P(t)]Q - Q[\Lambda(t) + P(t)] + [R(t)][I_n + Q]. \] (2.52)

A general solution \(Q(t) \) of (2.52) can be written in the form

\[Q(t) = \Phi(t)C\Psi(t)^{-1} + \int_{t}^{\infty} \Phi(t)\Phi(s)^{-1}R(t)\Psi(s)\Psi(t)^{-1}ds, \] (2.53)
where C is an arbitrary constant matrix, \(\Phi(t) \) is an \(n \times n \) fundamental matrix of
\[
\frac{d\Phi}{dt} = [\Lambda(t) + P(t) + R(t)]\Phi, \quad (2.54)
\]
and \(\Psi(t) \) is an \(n \times n \) fundamental matrix of
\[
\frac{d\Psi}{dt} = [\Lambda(t) + P(t)]\Psi. \quad (2.55)
\]
Thus \(Q(t) \) exists on \(I_0 \) satisfying the first condition of Lemma 2.1.1. We shall prove
the existence of the solution of (2.52) satisfying condition \(\lim_{t \to +\infty} Q(t) = 0 \), in
an interval \(I = \{ t : t_1 \leq t < \infty \} \) for a large \(t_1 \), then, by (2.53), \(Q(t) \) exists on \(I_0 \)
satisfying the required conditions.

STEP 2: We shall construct \(Q(t) \) by means of equation (2.52) and the condition
\(\lim_{t \to +\infty} Q(t) = 0 \). To do this, let \((f, s) \) be the unique solution of the initial value
problem:
\[
\frac{dY}{dt} = [\Lambda(t) + P(t)]Y, \quad Y(s) = I_n + G(s), \quad (2.56)
\]
where \(G(t) \) is the transformation matrix given in the assumption of the Lemma.
Then, (2.52) is equivalent to the following linear integral equation:
\[
Q(t) = \int_t^\Phi(t, s)[I_n + G(s)]^{-1}R(s)[I_n + Q(s)][I_n + G(s)]\Phi(t, s)^{-1}ds, \quad (2.57)
\]
where by assumption,
\[
\Phi(t, s) = [I_n + G(t)]\exp\{\int_s^t \Lambda(\tau)d\tau\}. \quad (2.58)
\]
Let
\[
[I_n + G(s)]^{-1}[I_n + Q(s)][I_n + G(s)] = I_n + H(s) \quad (2.59)
\]
and let
\[
[R(s) = [I_n + G(s)]^{-1}R(s)[I_n + G(s)], \quad (2.60)
\]
then we can rewrite (2.57) as
\[
H(t) = \int_t^\infty \exp \{ \int_s^t \Lambda(\tau)d\tau \} \tilde{R}(s)[I_n + H(s)]\exp\{- \int_s^t \Lambda(\tau)d\tau \}ds.
\] (2.61)

STEP 3: Let
\[H(t) = (h_{ij}(t))_{n \times n}\text{ and } \tilde{R}(t) = (\tilde{r}_{ij}(t))_{n \times n},\]
we can write the integral equation (2.61) in the following form:

\[
\begin{cases}
h_{jj}(t) = h_{jj}(t) = \int_t^\infty \exp \{ \int_s^t \lambda_{jj}(\tau)d\tau \} \tilde{r}_{jj}(s)h_{jj}(s)ds, \\
h_{jk}(t) = \int_t^\infty \exp \{ \int_s^t \lambda_{jk}(\tau)d\tau \} \tilde{r}_{jk}(s)h_{jk}(s)ds,
\end{cases}
\]
(2.62)

where \(j, k = 1, 2, \ldots, n\), and the initial points \(\tau_{jk}\) are chosen as the follows:

\[
\tau_{jk} = \begin{cases}
+\infty & \text{if } j = k, \\
t_2 & \text{if } j < k, \\
+\infty & \text{if } j > k,
\end{cases}
\]
(2.63)

where \(t_2 \geq t_1\) is a suitable large number. As in the proof of Theorem L, by using successive approximations in a usual manner (see [31], [28]), it can be shown that
\[H(t) \to 0, \text{ as } t \to +\infty.\] (2.64)

STEP 4: From (2.59), we have
\[I_n + Q(t) = [I_n + G(t)][I_n + H(t)][I_n + G(t)]^{-1}.\] (2.65)

Since
\[G(t), H(t) \to 0, \text{ as } t \to +\infty,\]
it follows that
\[I_n + Q(t) \to I_n, \text{ as } t \to +\infty.\]
So

\(Q(t) \to 0, \text{ as } t \to +\infty. \)
CHAPTER III

ASYMPTOTIC BEHAVIOR FOR SYSTEM HAVING MULTIPLE EIGENVALUES

3.1 Introduction

In last chapter, we studied the asymptotic behavior of the solutions for the system of differential equations (1.1) in which the real parts of the eigenvalues of $A(t)$ are separated from each other by a fixed number in the sense of Assumption 2.1.2 (see the Remark at the end of Section 2.1). In this chapter, we will consider the asymptotic behavior of the solutions for the system of differential equations (1.1) in which the real parts of some eigenvalues of $A(t)$ have same limits as t goes to $+\infty$. As mentioned in Chapter I, this problem has a close relationship with that of finding the deficiency index of linear differential operators.

Consider the linear system of differential equations

$$
\frac{dy}{dt} = [A + V(t) + \hat{R}(t)] y,
$$

(3.1)

where A is an $n \times n$ constant matrix, $V(t)$ and $\hat{R}(t)$ are $n \times n$ continuous matrices on $I_0 = [t_0, \infty)$.

In Chapter I, we mentioned that by using Theorem L, Levinson proved the following theorem.

Theorem LE [31]. Assume that (i) A is a constant matrix with distinct eigenvalues; (ii) $V(t)$ satisfies Assumption 1.4; (iii) $\hat{R}'(t)$ is continuous for $t \geq t_0$, $\hat{R}(t) \in L^1(I_0)$; and (iv) the eigenvalues of the matrix $A + V(t)$ satisfy Assumption 1.2. Then there exists an $n \times n$ matrix $Q(t)$ such that
1. the derivative $Q'(t)$ exists, and the entries of $Q(t)$ and $Q'(t)$ are continuous in t on the interval I_0,

2. $\lim_{t \to +\infty} Q(t) = 0$,

3. the transformation:

$$y = P[I_n + Q(t)]z$$

changes system (3.1) into

$$\frac{dz}{dt} = \Lambda(t)z$$

on the interval I_0, where P is a constant matrix such that $P^{-1}AP$ is a diagonal matrix and $\Lambda(t)$ is a diagonal matrix with diagonal elements the eigenvalues of $A + V(t)$.

If the eigenvalues of A are not all distinct, the analysis of the asymptotic behavior of the solution for above system involves much more delicate techniques. Here are some important results due to Devinatz and Kaplan [9] and Chiba and Kimura [3]. In order to introduce their theorems we need some assumptions. Let

$$K = \sum_{i=1}^{s} \sum_{j=1}^{e_i} \bigoplus K_{ij}, \quad \text{with} \quad K_{ij} = \begin{bmatrix} \lambda_i & 1 & 0 & \cdots & 0 \\ 0 & \lambda_i & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ 0 & 0 & 0 & \cdots & \lambda_i \end{bmatrix},$$

be Jordan's canonical form of A, where the $\lambda_i's$ are the distinct eigenvalues of A, K_{ij} are n_{ij} by n_{ij} matrices, and $\sum \bigoplus$ denotes the direct sum of matrices.

Assumption 3.1.1. The minimal polynomial of A is of degree n, that is $e_i = 1$, for all $i = 1, 2, \ldots, s$.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Remark: Under Assumption 3.1.1, the minimal polynomial of A is of the form

$$P(\lambda) = \prod_{i=1}^{s}(\lambda - \lambda_i)^{n_{ii}}, \text{ with } \lambda_i \neq \lambda_k \text{ if } i \neq k, \text{ and } \sum_{i=1}^{s}n_{ii} = n.$$

Let

$$r + 1 = \max\{n_{ii}, \ i = 1, 2, \ldots, s\}.$$

Assumption 3.1.2. $V(t)$ is absolutely continuous on each compact subinterval in (t_0, ∞), $t^{|V'(t)|} \in L^1(I_0)$, and $V(t) \to 0$, as $t \to +\infty$.

Let $\{\lambda_{ij}(t)\}$ denote the eigenvalues of $A + V(t)$, where $1 \leq i \leq s$, and $1 \leq j \leq n_{ii}$.

Assumption 3.1.3. The eigenvalues $\{\lambda_{ij}(t)\}$ are absolutely continuous and satisfy:

1. $\lambda_{ij}(t) \to \lambda_i$, as $t \to +\infty$, for $1 \leq j \leq n_{ii}$;
2. $\int_{t_0}^{t} t^{|\lambda'_{ij}(t)|} dt < +\infty$, $1 \leq i \leq s$, $1 \leq j \leq n_{ii}$.

Assumption 3.1.4. The matrix $\tilde{R}(t)$ satisfies

$$t^r \tilde{R}(t) \in L^1(I_0).$$

For any positive integer q, let

$$\mu_{kj} = \lambda_{k1}(t) + \frac{q - 1}{t}.$$

Devinatz and Kaplan [9] proved the following:

Theorem DK [9]. Suppose Assumptions 3.1.1, 3.1.2, 3.1.3 and 3.1.4 are all satisfied by system (3.1). Suppose, furthermore, that for each fixed (k, q), $1 \leq k \leq s$, $1 \leq q \leq n_{kj}$, all of pairs (j, p), $1 \leq j \leq s$, $1 \leq p \leq n_{ji}$, fall into one of two classes I_{kj} and J_{kj}, where

1. $(j, p) \in I_{kj}$, if

$$\int_{t_0}^{t} \mathcal{R}[\mu_{kj}(\tau) - \mu_{jp}(\tau)] d\tau \to \infty, \text{ as } t \to \infty,$$
and
\[\int_s^t R[\mu_{kq}(\tau) - \mu_{jp}(\tau)]d\tau > -L, \text{ for } t \geq s > 0, \]

(2) \((j, p) \in J_{kq}\), if
\[\int_s^t R[\mu_{kq}(\tau) - \mu_{jp}(\tau)]d\tau < L, \text{ for } t \geq s > 0, \]

where \(L\) is a positive constant.

Then there exists a positive constant \(t_1\), \((t_1 \geq t_0)\), eigenvectors \(q_i\) corresponding to \(\lambda_i\), \(1 \leq i \leq s\), and \(n\) linearly independent functions \(y_{ij}(t)\), \(1 \leq i \leq s\), \(1 \leq j \leq n_{ii}\), which are solutions of (3.1) such that
\[y_{ij}(t) e^{-J_1} \exp\{-\int_{t_1}^t \lambda_{ii}(\tau) d\tau\} \to q_i, \text{ as } t \to \infty. \]

If not all \(e_i\)'s are equal to 1, we have the following theorem obtained by Chiba and Kimura [3]. To state it, we need:

Assumption 3.1.5. The Jordan's canonical form \(J(t)\) of \(A + V(t)\) is written as follows:

\[
J(t) = \sum_{i=1}^{s} \sum_{j=1}^{e_i} \bigoplus J_{ij}(t), \quad J_{ij}(t) = \begin{bmatrix}
\lambda_i(t) & 1 & 0 & \cdots & 0 \\
0 & \lambda_i(t) & 1 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
0 & 0 & 0 & \cdots & \lambda_i(t)
\end{bmatrix},
\]

for \(t \geq t_0\), where \(J_{ij}(t)\) must also be \(n_{ij}\) by \(n_{ij}\) matrices.

Let
\[n_i = \max_k \{n_{ik}\}, \quad n_0 = \max_i \{n_i\}. \]

Chiba and Kimura [3] proved the following:

Theorem CK [3]. Let \((h, l)\) be a pair of indices such that \(1 \leq h \leq s\) and \(1 \leq l \leq n_{hh}\), for some \(k\). Suppose that:
(A) Assumption 3.1.5 is satisfied.

(B) There exist 2s + 1 real-valued functions \(\alpha_1(t), \ldots, \alpha_s(t); \bar{\alpha}_1(t), \ldots, \bar{\alpha}_s(t) \) and \(\beta(t) \) continuous on \([t_0, \infty)\) and a partitioning \(\{I_1, I_2\} \) of the set \(\{1, 2, \ldots, n\} \) with the following properties:

(i) for \(t_0 \leq t < \infty \), we have

\[
\alpha_i(t) \leq \int_{t_0}^{t} \Re(e^{\lambda_i(t)} - e^{\lambda_i(\tau)}) d\tau \leq \bar{\alpha}_i(t), \quad \alpha_i(t) - \bar{\alpha}_i(t) \leq \beta(t), \quad i = 1, \ldots, s.
\]

(ii) If \(i \in I_1 \), then \(\alpha_i(t) - (n_i - 1) \log(t) \) is an increasing function on \([t_0, \infty)\) and tends to \(\infty \) as \(t \to \infty \). If \(i \in I_2 \), then \(\alpha_i(t) \) is an increasing or decreasing function and \(\bar{\alpha}_i(t) \leq \beta(t) \).

(C)

\[
\int_{t_0}^{\infty} \tau^{n_i - 1 + l - 1} e^{\beta(t)} ||V'(\tau)|| d\tau < \infty,
\]

(D)

\[
\int_{t_0}^{\infty} \tau^{n_i - 1 + l - 1} e^{\beta(t)} ||\bar{R}(\tau)|| d\tau < \infty,
\]

where \(|| \cdot || \) denotes any matrix norm.

Then for any \(j \) such that \(n_{h_j} \geq l \), there exists a solution \(y(t) \) of (3.1) with the asymptotic expression

\[
y = (q_{h_j} + o(1)) \frac{t^{l-1}}{(l-1)!} \exp\{\int_{t_0}^{t} \lambda_h(\tau) d\tau\},
\]

where \(q_{h_j} \) are the eigenvectors of \(A \) associated with \(\lambda_h \).

From Assumption 3.1.2 and condition (C) in Theorem CK, it is easy to see that Theorems DK and CK cannot be applied to the system (3.1) with \(V'(t) \notin L^1(I_0) \). The range of the applications of Theorems DK and CK are also greatly limited by Assumptions 3.1.1 and 3.1.5 as well. Assumption 3.1.1 requires that the eigenvalues of \(A \) are all distinct when \(A \) is diagonalizable, and Assumption 3.1.5 requires that the diagonal block \(J_{ij}(t) \) of the Jordan's canonical form \(J(t) \) of
$A + V(t)$ has the same order as the diagonal block K_{ij} of the Jordan's canonical form J of A. Theorem HX in [28] generalized above results. In Theorem HX, the condition (C) of Theorem CK, Assumptions 3.1.1, Assumptions 3.1.2 and 3.1.5 are removed. In this chapter we will generalize Theorem HX.

3.2 The Main Theorem

Consider the following system of equations:

$$\frac{dy}{dt} = [A(t) + R(t)]y,$$

(3.2)

where $A(t) = \text{diag}\{A_1(t), A_2(t), \ldots, A_n(t)\}$ is a diagonal matrix, and the entries of matrix $R(t)$ are small in certain sense to be seen below.

Note when A is diagonalizable, system (3.1) can be changed into (3.2). For the sake of convenience, we assume, without loss of generality, that the diagonal elements of $R(t)$ are all zero.

As in Chapter I, let

$$R(t) = \{r_{jk}(t)\}_{j,k=1}^n$$

(3.3)

and

$$r_1(t) = \max_{j > k} |r_{jk}(t)|, \quad r_2(t) = \max_{j < k} |r_{jk}(t)|.$$

(3.4)

In order to obtain the asymptotic formula for the solution of the systems with $D_{jk}(t) = 0(t^{-1})$, $t \geq t_0$, where $D_{jk}(t)$ are defined in Assumption 1.2, we assume the following:

Assumption 3.2.1. There exist two positive constants β, ($\beta > 1$) and K such that for each pair of indices j and k, $(j, k = 1, 2, \ldots, n; k \neq j)$, either

$$\exp\left\{\int_t^s D_{jk}(\tau)d\tau\right\} \leq K\left(\frac{s}{t}\right)^{\beta}, \text{ for all } s \geq t,$$

(3.5)
or

\[
\exp\left\{ \int_{t}^{s} D_{jk}(\tau)d\tau \right\} \leq K(s_{t})^{\beta}, \text{ for all } s \leq t.
\]

(3.6)

Assumption 3.2.2. The matrix \(R(t) \) is continuous and satisfies:

\[
|R(t)| = o\left(t^{-1}\right), \text{ as } t \to +\infty,
\]

(3.7)

and either

\[
\int_{t_{0}}^{+\infty} t^{-1} \max_{s \geq t/n} \{sr_{1}(s)\} dt < +\infty,
\]

(3.8)

or

\[
\int_{t_{0}}^{+\infty} t^{-1} \max_{s \geq t/n} \{sr_{2}(s)\} dt < +\infty.
\]

(3.9)

Theorem 3.2.1. Under Assumption 3.2.1 and Assumption 3.2.2, there exists an \(n \times n \) matrix \(Q(t) \) such that

1. the derivative \(Q'(t) \) exists, and the entries of \(Q(t) \) and \(Q'(t) \) are continuous in \(t \) on the interval \(I_{0} \),

2. \(\lim_{t \to +\infty} Q(t) = 0 \),

3. the transformation:

\[
y = [I_{n} + Q(t)]z \]

(3.10)

changes systems (3.2) into

\[
\frac{dz}{dt} = \Lambda(t)z,
\]

(3.11)

on the interval \(I_{0} \), where \(I_{n} \) is the \(n \times n \) identity matrix.
This generalizes Theorem HX in the sense that $D_{jk}(t)$ can be of order $O(t^{-1})$ for some or all $j \neq k$. The proof of Theorem 3.2.1 will be given in Section 3.3, and two examples will be given in Section 3.4 to illustrate the application of the Theorem. Here, applying “shearing” transformations (see W. Wasow [36]) we will have two immediate results from Theorem HX and Theorem 3.2.1.

Consider the following 2×2 system:

$$\frac{dy}{dt} = \begin{bmatrix} \lambda_1(t) & r_{12}(t) \\ r_{21}(t) & \lambda_2(t) \end{bmatrix} y, \quad (3.12)$$

we have:

Proposition 3.2.1. If system (3.12) satisfies one of the following two conditions:

(a) $\lambda_1(t)$ and $\lambda_2(t)$ satisfy Assumption 1.7 for some α, ($0 \leq \alpha < 1$), and $r_{12}(t) = 0(t^{-p})$, $r_{21}(t) = 0(t^{-q})$, with $p + q > 1 + \alpha$; or

(b) $\lambda_1(t)$ and $\lambda_2(t)$ satisfy Assumption 3.2.1 and $r_{12}(t) = 0(t^{-1}(\ln t)^{-p})$, $r_{21}(t) = 0(t^{-1}(\ln t)^{-q})$, with $p + q > 1$,

then there exist a 2×2 matrix $Q(t)$ and a 2×2 diagonal matrix $S(t)$ such that

(1) the derivative $Q'(t)$ exists, and the entries of $Q(t)$ and $Q'(t)$ are continuous in t on the interval I_0,

(2) $\lim_{t \to +\infty} Q(t) = 0$,

(3) the transformation:

$$y = S(t)[I_2 + Q(t)]z$$

changes systems (3.12) into

$$\frac{dz}{dt} = [A(t) - S^{-1}(t)S'(t)]z \quad (3.13)$$
on the interval I_0, where $S(t) = \text{diag}\{1, t^{-\delta}\}$ in case (a); and $S(t) = \text{diag}\{1, (\ln t)^{-\gamma}\}$ in case (b), with some real numbers δ, and γ.

Proof of Proposition 3.2.1: (The proof is given under condition (a) by using Theorem HX. Similar proof can be obtained under condition (b) by using Theorem 3.2.1.) Let $c = p + q - \alpha - 1$, $\delta = 1 + \frac{p}{2} - p$, and let $S(t) = \text{diag}\{1, t^{-\delta}\}$, then system (3.12) is transformed into

$$\frac{d\tilde{y}}{dt} = \begin{bmatrix} \lambda_1(t) & \tilde{r}_{12}(t) \\ \tilde{r}_{21}(t) & \lambda_2(t) + \frac{\delta}{2} \end{bmatrix} \tilde{y},$$

by $y = S(t)\tilde{y}$, where

$$\tilde{r}_{12}(t) = O(t^{-(1+\frac{\delta}{2})}),$$

and

$$\tilde{r}_{21}(t) = O(t^{-p-q+1+\frac{\delta}{2}}) = o(t^{-\alpha}).$$

By Theorem HX, there exists an 2×2 matrix $Q(t)$ satisfying condition (1) and (2) in Proposition 3.3.1 such that the transformation $\tilde{y} = [I_2 + Q(t)]z$ changes (3.14) into (3.13). □

In general, since for

$$S(t) = \text{diag}\{1, t^{-\delta_1}, t^{-\delta_2}, \ldots, t^{-\delta_{n-1}}\},$$

where $\delta_1, \delta_2, \ldots, \delta_{n-1}$ are all non-zero real numbers, if we perform the transformation

$$y(t) = S(t) \cdot z(t),$$

then system (3.2) can be changed into

$$\frac{dz}{dt} = [(S^{-1}(t)A(t)S(t) - S^{-1}(t)S'(t)) + S^{-1}(t)R(t)S(t)]z,$$

(3.15)
where

\[S^{-1}(t) \Lambda(t) S(t) - S^{-1}(t) S'(t) \]

\[= \begin{bmatrix}
\lambda_1(t) & 0 & \cdots & 0 \\
0 & \lambda_2(t) + \delta_1 t^{-1} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_n(t) + \delta_{n-1} t^{-1}
\end{bmatrix}, \]

and

\[S^{-1}(t) R(t) S(t) \]

\[= \begin{bmatrix}
r_{12}(t) t^{-\delta_1} & \cdots & r_{1n}(t) t^{-\delta_{n-1}} \\
r_{21}(t) t^{\delta_1} & 0 & \cdots & r_{2n}(t) t^{\delta_1 - \delta_{n-1}} \\
r_{n1}(t) t^{\delta_{n-1}} & r_{n2}(t) t^{\delta_{n-1} - \delta_1} & \cdots & 0
\end{bmatrix}. \quad (3.16) \]

Thus we have the following proposition:

Proposition 3.2.2. If there exist \(n - 1 \) non-zero real numbers \(\delta_1, \delta_2, \cdots, \delta_{n-1} \) such that system (3.15) satisfies either the Assumptions 1.7 and 1.8 or Assumptions 3.2.1 and 3.2.2, then there exists an \(n \times n \) matrix \(Q(t) \) such that

1. the derivative \(Q'(t) \) exists, and the entries of \(Q(t) \) and \(Q'(t) \) are continuous in \(t \) on the interval \(I_0 \),

2. \(\lim_{t \to +\infty} Q(t) = 0 \),
3. the transformation:

\[z = [I_n + Q(t)]w \]

changes systems (3.15) into

\[\frac{dw}{dt} = [\Lambda(t) - S^{-1}(t)S'(t)]w \] \hspace{1cm} (3.17)

on the interval \(I_0 \), where \(S^{-1}(t)S'(t) = -\text{diag}\{0, \delta_1 t^{-1}, \delta_2 t^{-1}, \ldots, \delta_{n-1} t^{-1}\} \).

3.3 Proof of Theorem 3.2.1

We will prove Theorem 3.2.1 under the condition (3.9) in Assumption 3.2.2. The proof is to be given in seven steps. A similar proof is valid also under condition (3.8). Here we use the successive approximation method similar to Gauss-Seidel iterations (e.g. see G.H. Golub and C.F. VanLoan [19] and R.S. Varga [34]) developed in Hsieh and Xie [28].

STEP 1: By differentiating both sides of (3.10) and by (3.2), we obtain

\[\frac{dQ}{dt} z + [I_n + Q][\frac{dz}{dt}] = [\Lambda(t) + R(t)][I_n + Q]z. \] \hspace{1cm} (3.18)

Hence, by (3.11), \(Q \) should satisfy the linear differential equation:

\[\frac{dQ}{dt} = [\Lambda(t) + R(t)][I_n + Q] - [I_n + Q] \Lambda(t), \] \hspace{1cm} (3.19)

or, equivalently,

\[\frac{dQ}{dt} = \Lambda(t)Q - QA(t) + R(t)[I_n + Q]. \] \hspace{1cm} (3.20)

A general solution \(Q(t) \) of (3.20) can be written in the form

\[Q(t) = \Phi(t)C\Psi(t)^{-1} + \int_{t}^{t} \Phi(t)\Phi(s)^{-1}R(s)\Psi(s)\Psi(t)^{-1}ds, \] \hspace{1cm} (3.21)
where C is an arbitrary constant matrix, $\Phi(t)$ is an $n \times n$ fundamental matrix of

$$\frac{d:\Phi}{dt} = [\Lambda(t) + R(t)]\Phi,$$

(3.22)

and $\Psi(t)$ is an $n \times n$ fundamental matrix of

$$\frac{d\Psi}{dt} = \Lambda(t)\Psi.$$

(3.23)

Thus $Q(t)$ exists on I_0 satisfying condition (1) of Theorem 3.2.1. We shall prove the existence of the solution of (3.20) satisfying condition $\lim_{t \to +\infty} Q(t) = 0$, in an interval $I = \{t : t_2 \leq t < \infty\}$ for a large t_2, then, by (3.21), $Q(t)$ exists on I_0 satisfying the required conditions.

STEP 2: We shall construct $Q(t)$ by means of equation (3.19) and the condition $\lim_{t \to +\infty} Q(t) = 0$. To do this, let $\Phi(t, s)$ be the unique solution of the initial value problem:

$$\frac{dY}{dt} = \Lambda(t)Y, \quad Y(s) = I_n.$$

(3.24)

Also, let

$$Q(t) = (q_{jk}(t))_{j,k=1}^n,$$

(3.25)

and

$$\lambda_{jk}(t) = \lambda_j(t) - \lambda_k(t), \quad j, k = 1, 2, \ldots, n, (j \neq k).$$

(3.26)

Then, (3.19) is equivalent to the following linear integral equation:

$$Q(t) = \int_t^s \Phi(t, s)R(s)[I_n + Q(s)]\Phi(t, s)^{-1}ds,$$

(3.27)

where

$$\Phi(t, s) = \exp\{\int_s^t \Lambda(\tau)d\tau\},$$

(3.28)
with \(\Lambda(t) = \text{diag}\{\lambda_1(t), \lambda_2(t), \ldots, \lambda_n(t)\} \).

STEP 3: Let

\[
\tilde{r}_1(t) = \max_{s \geq t}[sr_1(s)] \quad \text{and} \quad \tilde{r}_2(t) = \max_{s \geq t}[sr_2(s)].
\]

Then by (3.7), \(\tilde{r}_1(t) \) and \(\tilde{r}_2(t) \) are monotonic decreasing and tending to zero as \(t \to +\infty \). Moreover, by (3.9), we have

\[
\int_{t_0}^{\infty} t^{-1}\tilde{r}_2(t)dt < +\infty.
\]

By the notation (3.25) and (3.26), we can write the integral equation (3.27) in the following form:

\[
\begin{cases}
q_{ij}(t) = \int_{t_j}^{t} \sum_{h=1, h \neq j}^{n} r_{jh}(s)q_{ih}(s)ds, \\
q_{jk}(t) = \int_{t_j}^{t} \exp \{\int_{s}^{t} \lambda_{jk}(\tau)d\tau\}[r_{jk}(s) + \sum_{h=1, h \neq j}^{n} r_{jh}(s)q_{hk}(s)]ds, (j \neq k),
\end{cases}
\]

where \(j, k = 1, 2, \ldots, n \), and the initial points \(\tau_{jk} \) are chosen as follows:

\[
\tau_{jk} = \begin{cases}
+\infty & \text{if} \ j = k, \\
t_2 & \text{for the case (3.5),} \ (j \neq k), \\
+\infty & \text{for the case (3.6),} \ (j \neq k),
\end{cases}
\]

where \(t_2 \) is a suitable large number.

STEP 4: In order to utilize the condition (3.9), namely (3.30), define the "row-wise" successive approximations as follows:

\[
\begin{cases}
q_{0,ij}(t) \equiv 0, \\
q_{p,ij} = \int_{t_j}^{t} \sum_{h=1}^{p-1} r_{jh}(s)q_{p,hj}(s) + \sum_{h=j+1}^{n} r_{jh}(s)q_{p-1,hj}(s)]ds, \\
q_{p,ijk}(t) = \int_{t_j}^{t} \exp \{\int_{s}^{t} \lambda_{jk}(\tau)d\tau\}[r_{jk}(s) + \sum_{h=1}^{j-1} r_{jh}(s)q_{p,hk}(s) \\
\quad \quad + \sum_{h=j+1}^{n} r_{jh}(s)q_{p-1,hk}(s)]ds, (j \neq k),
\end{cases}
\]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
where \(j, k = 1, 2, \ldots, n, p = 1, 2, \ldots \). Note that \(q_{p,1k}(t) \) depends only on \(q_{p-1,hk}(t) \), and \(q_{p,jk}(t) \) depends only on \(q_{p-1,hk}(t) \) for \(h > j \) and \(q_{p,hk}(t) \) for \(h < j \). Therefore, \(q_{p,jk}(t) \) is obtained in the increasing order of \(p \) and, for each \(p \), in the increasing order of \(j \), namely from the first row down, and thus the \(q_{p,jk}(t) \) are defined successively.

STEP 5: We will see that \(q_{p,jk}(t) \) defined by (3.33) is uniformly bounded for all \(p \) on the interval \([t_2, +\infty)\) for large enough \(t_2 \); namely,

\[
|q_{p,jk}(t)| \leq G, \quad t \in [t_2, +\infty),
\]

for \(j, k = 1, 2, \ldots, n; p = 1, 2, \ldots \). In order to prove this we provide the following lemma, valid for each fixed \(p \), \((p = 1, 2, \ldots) \).

Lemma 3.3.1. Suppose that there exist two positive constants \(G \) and \(t_2 \), \((t_2 > 1, \text{large enough}) \), such that

(a) \(|q_{p-1,jk}(t)| \leq G, \quad \text{for } t \in [t_2, +\infty), \quad j, k = 1, 2, \ldots, n; \)

(b) \(\int_{t_2}^{+\infty} s^{-1} \tilde{r}_2(s^{1/2n}) \, ds < \frac{1}{2n}; \)

(c) \(\tilde{r}_1(\sqrt{t_2}) + \tilde{r}_2(t_2^{1/2n}) \leq \frac{G}{2^{n+1}(1+nG)K_1}, \quad (K_1 = 2^\delta K). \)

Then we have

\[
|q_{p,jk}(t)| \leq \begin{cases}
2nG[\tilde{r}_1(t_2) + \tilde{r}_2(t_2)]t^{-1/2j} + nG \int_{t_2}^{+\infty} s^{-1} \tilde{r}_2(s^{1/2j}) \, ds, \quad (j = k), \\
(1 + nG)K_1 \{[\tilde{r}_1(t_2) + \tilde{r}_2(t_2)]t^{-1/2} + \tilde{r}_1(\sqrt{t}) + \tilde{r}_2(\sqrt{t})\}, \quad (j > k), \\
2(1 + nG)K_1 \{[\tilde{r}_1(t_2) + \tilde{r}_2(t_2)]t^{-1/2j} + \tilde{r}_2(t^{1/2j})\}, \quad (j < k),
\end{cases}
\]

for \(t \in [t_2, +\infty) \), and \(j, k = 1, 2, \ldots, n. \)
Proof of Lemma 3.3.1: We will prove (3.35) in the increasing order of j.

Case I: $j = 1$. For $k = 1$, since

$$r_2(s) \leq s^{-1}\max_{t \geq s}[sr_2(t)] \leq s^{-1}\max_{t \geq s}[tr_2(t)] = s^{-1}r_2(s), \quad (3.36)$$

by (3.33), we have

$$|q_{p,11}(t)| \leq \int_t^\infty \sum_{h=2}^n r_{1h}(s)q_{p-1,h_1}(s)ds \quad (3.37)$$

$$\leq (n - 1)G \int_t^\infty r_2(s)ds \leq (n - 1)G \int_t^\infty s^{-1}r_2(s)ds.$$

For $k = 2, 3, \ldots, n$, in case of (3.6), for $t \in [t_2, \infty)$, by (3.33) and (3.32), we have

$$|q_{p,1k}(t)| \leq \int_t^\infty K(\frac{s}{t})^\beta |r_{1k}(s)| + \sum_{h=2}^n r_{1h}(s)q_{p-1,hk}(s)|ds \leq [1 + (n - 1)G]K \int_t^\infty r_2(s)ds \quad (3.38)$$

$$\leq [1 + (n - 1)G]K \max_{\{s \geq t\}}[sr_2(s)] = [1 + (n - 1)G]K r_2(t),$$

In case of (3.5), for $t \in [t_2, \infty)$, by (3.33) and (3.32), we have

$$|q_{p,1k}(t)| \leq \int_{t_2}^t K(\frac{s}{t})^\beta |r_{1k}(s)| + \sum_{h=2}^n r_{1h}(s)q_{p-1,hk}(s)|ds \leq \int_{t_2}^{\sqrt{t+t_2}} K(\frac{s}{t})^\beta |r_{1k}(s)| + \sum_{h=2}^n r_{1h}(s)q_{p-1,hk}(s)|ds \quad (3.39)$$

$$+ \int_{t_2}^{t+t_2} K(\frac{s}{t})^\beta |r_{1k}(s)| + \sum_{h=2}^n r_{1h}(s)q_{p-1,hk}(s)ds \leq [1 + (n - 1)G][\max_{s \geq t_2}[sr_2(s)] \int_{t_2}^{\sqrt{t+t_2}} Ks^{-1}(\frac{s}{t})^\beta ds$$

$$+ [1 + (n - 1)G][\max_{s \geq \sqrt{t}}[sr_2(s)] \int_{t_2}^{\sqrt{t}} Ks^{-1}(\frac{s}{t})^\beta ds.$$

Since

$$\int_{t_2}^{\sqrt{t+t_2}} Ks^{-1}(\frac{s}{t})^\beta ds = \frac{K}{\beta} \left[\frac{1}{\sqrt{t}} + \frac{t_2}{t} \right]^{\frac{1}{\beta}} - \frac{t_2}{t} \leq 2^{\beta-1}K \frac{1}{\sqrt{t}}, \quad (3.40)$$

and

$$\int_{\sqrt{t}}^t Ks^{-1}(\frac{s}{t})^\beta ds \leq \frac{K}{\beta} (1 - (\frac{\sqrt{t}}{t})^\beta) < K, \quad (3.41)$$

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
we have

\[|q_{p,1k}(t)| \leq K_1[1 + (n - 1)G]r_2(t_2)\frac{1}{\sqrt{t}} + K_1[1 + (n - 1)G]r_2(\sqrt{t}). \quad (3.42) \]

Hence,

\[|q_{p,1k}(t)| \leq \begin{cases}
(n-1)G \int_t^\infty s^{-1}r_2(s)ds, & k = 1, \\
(1 + (n-1)G)K_1[r_2(t_2)\frac{1}{\sqrt{t}} + r_2(\sqrt{t})], & k \neq 1.
\end{cases} \quad (3.43) \]

Thus, (3.35) is true for \(j = 1 \) and \(k = 1, 2, \ldots, n \).

Case II: Assume that (3.35) is true for \(j < m \), \((m > 1) \), we want to show that (3.35) is true for \(j = m \).

Case IIa. For \(k < m \), in case of (3.6), from (3.33) and the assumption (3.35) for this case, (i.e. (3.34) is true for \(j < m \), we have

\[|q_{p,mk}(t)| \leq \int_t^\infty K^{(\frac{1}{2})}r_m(s) + \sum_{h=1}^{m-1} r_m(s)q_{p,hk}(s) \]

\[+ \sum_{h=m+1}^{n} r_m(s)q_{p-1,hk}(s)|ds \]

\[\leq [1 + (m-1)G][\max_{s \geq t}\{ s r_1(s)\}] \int_t^\infty K^{s^{-1}\left(\frac{1}{2}\right)}ds \]

\[+ (n-m)G[\max_{s \geq t}\{ s r_2(s)\}] \int_t^\infty K^{s^{-1}\left(\frac{1}{2}\right)}ds \]

\[= K_1[1 + (m-1)G]r_1(t) + K_1(n-m)G r_2(t). \]

In case of (3.5), from (3.33) and by (3.40) and (3.41), with similar reasons as for (3.39), we have

\[|q_{p,mk}(t)| \leq \int_t^{\sqrt{t}+t_2} K^{(\frac{1}{2})}r_m(s) + \sum_{h=1}^{m-1} r_m(s)q_{p,hk}(s) \]

\[+ \sum_{h=m+1}^{n} r_m(s)q_{p-1,hk}(s)|ds \]

\[\leq \{[1 + (m-1)G][\max_{s \geq t}\{ s r_1(s)\}] + (n-m)G[\max_{s \geq t}\{ s r_2(s)\}]\} \]

\[\cdot \int_t^{\sqrt{t}+t_2} K^{s^{-1}\left(\frac{1}{2}\right)}ds \]
\[
+ \left\{ [1 + (m - 1)G][\text{max}_{s \geq \sqrt{t}} \{ sr_1(s) \}] + (n - m)G[\text{max}_{s \geq \sqrt{t}} \{ sr_2(s) \}] \right\} \\
\cdot \int_{\sqrt{t}}^r Ks^{-1} (i \theta) ds \\
\leq K_1 \left\{ [1 + (m - 1)G] \tilde{r}_1(t_2) + (n - m)G\tilde{r}_2(t_2) \right\} \frac{1}{\sqrt{t}} \\
+ K \left\{ [1 + (m - 1)G] \tilde{r}_1(\sqrt{t}) + (n - m)G\tilde{r}_2(\sqrt{t}) \right\} \\
\leq K_1 \left\{ [1 + nG] \{ \tilde{r}_1(t_2) + \tilde{r}_2(t_2) \} \frac{1}{\sqrt{t}} + \tilde{r}_1(\sqrt{t}) + \tilde{r}_2(\sqrt{t}) \right\}.
\]

Thus, (3.35) is true for \(k < j = m \).

Case IIb. For \(k = m \), from (3.33), we have

\[
|q_{p,m}(t)| \leq \int_t^\infty \{ \sum_{h=1}^{m-1} |r_{m,h}(s)q_{p,h}(s)| + \sum_{h=m+1}^n |r_{m,h}(s)q_{p-1,h}(s)| \} ds
\leq \{ \sum_{h=1}^{m-1} \int_t^\infty s^{-1} |q_{p,h}(s)| ds \} [\text{max}_{s \geq \sqrt{t}} \{ sr_1(s) \}] + (n - m)G \int_t^\infty r_2(s) ds.
\]

Since \(h < m \) in the first summation, by the assumption (3.35) of this case, we have

\[
|q_{p,h}(t)| \leq 2(1 + nG)K_1 \{ [r_1(t_2) + \tilde{r}_2(t_2)] t^{-\frac{1}{2h}} + \tilde{r}_2(t_2) \}. \tag{3.47}
\]

Hence,

\[
\int_t^\infty s^{-1} |q_{p,h}(s)| ds
\leq 2(1 + nG)K_1 \{ [r_1(t_2) + \tilde{r}_2(t_2)] \int_t^\infty s^{-\frac{1}{2h}} ds + \int_t^\infty s^{-1} \tilde{r}_2(s^{\frac{1}{2h}}) ds \}.
\]

Since

\[
\int_t^\infty s^{-\frac{1}{2h}} ds = 2^h t^{-\frac{1}{2h}}, \tag{3.49}
\]

we have

\[
\int_t^\infty s^{-1} |q_{p,h}(s)| ds
\leq 2^{h+1}(1 + nG)K_1 \{ [r_1(t_2) + \tilde{r}_2(t_2)] t^{-\frac{1}{2h}} + \int_t^\infty s^{-1} \tilde{r}_2(s^{\frac{1}{2h}}) ds \}, \tag{3.50}
\]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
for all \(h < m \). Note here that \(\tilde{r}_1(t) \) and \(\tilde{r}_2(t) \) are decreasing functions. Substituting (3.50) into (3.46), we obtain

\[
|q_{p,mm}(t)| \\
\leq 2^{m+1} K_1(m-1)(1+nG)\tilde{r}_1(t_2)\tilde{r}_2(t_2)|t^{-\frac{1}{s}}| \\
+ 2^m K_1(m-1)(1+nG)\tilde{r}_1(t) \int_t^\infty s^{-1}\tilde{r}_2(s^\frac{1}{s})ds + (n-m)G \int_t^\infty r_2(s)ds.
\]
(3.51)

By condition (c) of the lemma, we have

\[
2^n K_1(1+nG)\tilde{r}_1(t) \leq \frac{G}{2} < G,
\]
(3.52)

for \(t \in [t_2, \infty) \). Hence,

\[
|q_{p,mm}(t)| \\
\leq 2(m-1)G [\tilde{r}_1(t_2) + \tilde{r}_2(t_2)]|t^{-\frac{1}{s}}| + (m-1)G \int_t^\infty s^{-1}\tilde{r}_2(s^\frac{1}{s})ds \\
+ (n-m)G \int_t^\infty r_2(s)ds
\]
(3.53)

Thus, (3.35) holds for \(j = k = m \).

Case IIc. For \(k > m \), in case of (3.6), from (3.33), we have

\[
|q_{p,mm}(t)| \\
\leq \int_t^\infty K(s)\tilde{r}_{mk}(s) + \sum_{h=1}^{m-1} r_{mh}(s)q_{p,ph}(s) \\
+ \sum_{h=m+1}^n r_{mh}(s)q_{p-1,hk}(s)|ds
\]
(3.54)

\[
\leq \{[\max_{s \geq t}\{sr_2(s)\}] + \sum_{h=1}^{m-1}[\max_{s \geq t}\{sr_{mh}(s)q_{p,ph}(s)\}]) \\
+ (n-m)G[\max_{s \geq t}\{sr_2(s)\}]) \int_t^\infty Ks^{-1}(^\frac{1}{s})ds
\]

\[
\leq K\{\tilde{r}_2(t) + (m-1)\tilde{r}_1(t)[\max_{s \geq t, h \leq m-1}|q_{p,ph}(s)|] + (n-m)G\tilde{r}_2(t)\}.
\]
Since \(h < m \), by the assumption (3.35) of this case, we have

\[
|q_{p,hk}(t)| \leq 2(1 + nG)K_1[[\tilde{r}_1(t_2) + \tilde{r}_2(t_2)]t^{-\frac{1}{2h}} + \tilde{r}_2(t^{\frac{1}{2h}})].
\]

Substituting these into (3.54), we obtain

\[
|q_{p,mk}(t)| \leq K[\tilde{r}_2(t) + 2K_1(m - 1)(1 + nG)\tilde{r}_1(t)([\tilde{r}_1(t) + \tilde{r}_2(t)]t^{-\frac{1}{2h}} + \tilde{r}_2(t^{\frac{1}{2h}})) + (n - m)G\tilde{r}_2(t)].
\]

By (3.52), we have

\[
|q_{p,mk}(t)| \leq K_1[\tilde{r}_2(t) + 2K_1(m - 1)G[\tilde{r}_1(t) + \tilde{r}_2(t)]t^{-\frac{1}{2h}}
\]

\[
+ 2K_1(m - 1)G[\tilde{r}_1(t_2) + \tilde{r}_2(t_2)]t^{-\frac{1}{2h}} + (n - m)G\tilde{r}_2(t)]
\]

\[
\leq K_1(m - 1)G[\tilde{r}_1(t) + \tilde{r}_2(t)]t^{-\frac{1}{2h}} + K_1(1 + nG)\tilde{r}_2(t^{\frac{1}{2h}})
\]

\[
\leq 2K_1(1 + nG)[[\tilde{r}_1(t) + \tilde{r}_2(t)]t^{-\frac{1}{2h}} + \tilde{r}_2(t^{\frac{1}{2h}})].
\]

Thus, (3.35) holds for this case.

In case of (3.5), from (3.33) and the assumption (3.35) of this case, since \(h < m < k \), we have

\[
|q_{p,mk}(t)| \leq \int_{t_2}^{t} K(\frac{1}{t})^\beta |r_{mk}(s) + \sum_{h=1}^{m-1} r_{mh}(s)q_{p,hk}(s)
\]

\[
+ \sum_{h=m+1}^{n} r_{mh}(s)q_{p-1,hk}(s)|ds
\]

\[
\leq \{\max_{s\geq t_2}\{sr_2(s)\} + (m - 1)G[\max_{s\geq t_2}\{sr_1(s)\}]
\]

\[
+ (n - m)G[\max_{s\geq t_2}\{sr_2(s)\}]\int_{t_2}^{l+t_2} Ks^{-1}(\frac{1}{t})^\beta ds
\]

\[
+ \{\max_{s\geq \sqrt{t}}\{sr_2(s)\} + (m - 1)[\max_{s\geq \sqrt{t}, 1 \leq h \leq m-1}|q_{p,hk}(s)\{sr_1(s)\}|]
\]

\[
+ (n - m)G[\max_{s\geq \sqrt{t}}\{sr_2(s)\}]\int_{l}^{l} Ks^{-1}(\frac{1}{t})^\beta ds
\]

(3.58)
\[
\begin{align*}
&\leq K_1 [\tilde{r}_2(t_2) + (m - 1)G\tilde{r}_1(t_2) + (n - m)G\tilde{r}_2(t_2)] t^{-\frac{1}{2m}} \\
&+ K_1 [\tilde{r}_2(\sqrt{t}) + 2K_1 (m - 1)(1 + nG)\tilde{r}_1(\sqrt{t})[\tilde{r}_1(t_2) + \tilde{r}_2(t_2)] t^{-\frac{1}{2m}} \\
&+ 2K_1 (m - 1)(1 + nG)\tilde{r}_1(\sqrt{t})\tilde{r}_2(t^{\frac{1}{2m}}) + (n - m)G\tilde{r}_2(\sqrt{t})].
\end{align*}
\]

By (3.52) and the fact that \(\tilde{r}_2(t)\) is monotonic decreasing, we have

\[
|q_{p, mk}(t)|
\leq K_1 [\tilde{r}_2(t_2) + (m - 1)G\tilde{r}_1(t_2) + (n - m)G\tilde{r}_2(t_2)] t^{-\frac{1}{2m}} \\
+ K_1 [\tilde{r}_2(\sqrt{t}) + (m - 1)G[\tilde{r}_1(t_2) + \tilde{r}_2(t_2)] t^{-\frac{1}{2m}} \\
+ (m - 1)G\tilde{r}_2(t^{\frac{1}{2m}}) + (n - m)G\tilde{r}_2(\sqrt{t})]
\]

(3.59)

\[
\leq K_1 [\tilde{r}_2(t_2) + nG\tilde{r}_1(t_2) + nG\tilde{r}_2(t_2) + nG[\tilde{r}_1(t_2) + \tilde{r}_2(t_2)] t^{-\frac{1}{2m}} \\
+ K_1 [\tilde{r}_2(\sqrt{t}) + (m - 1)G\tilde{r}_2(t^{\frac{1}{2m}}) + (n - m)G\tilde{r}_2(\sqrt{t})] \\
\leq 2K_1 (1 + nG)[\tilde{r}_1(t_2) + \tilde{r}_2(t_2)] t^{-\frac{1}{2m}} + K_1 (1 + nG)\tilde{r}_2(t^{\frac{1}{2m}}) \\
\leq 2K_1 (1 + nG)[\tilde{r}_1(t_2) + \tilde{r}_2(t_2)] t^{-\frac{1}{2m}} + \tilde{r}_2(t^{\frac{1}{2m}})].
\]

Thus, by (3.44), (3.45), (3.53), (3.57) and (3.59), we have for \(j = m,\)

\[
|q_{p, mk}(t)| \leq
\begin{cases}
2nG[\tilde{r}_1(t_2) + \tilde{r}_2(t_2)] t^{-1/2m} + nG \int_{1}^{\infty} s^{-1} \tilde{r}_2(s^{1/2m}) ds, & (m = k), \\
(1 + nG)K_1 [[\tilde{r}_1(t_2) + \tilde{r}_2(t_2)] t^{-1/2m} + \tilde{r}_1(\sqrt{t}) + \tilde{r}_2(\sqrt{t})], & (m > k), \\
2(1 + nG)K_1 [[\tilde{r}_1(t_2) + \tilde{r}_2(t_2)] t^{-1/2m} + \tilde{r}_2(t^{1/2m})], & (m < k),
\end{cases}
\]

(3.60)

for \(t \in [t_2, \infty),\) and \(m, k = 1, 2, \ldots, n.\)

STEP 6: In this step, we will show that, for large enough \(t_2,\) the sequences \(\{q_{p, jk}(t)\}_{p = 1, 2, \ldots}\) converges uniformly to functions \(q_{jk}(t)\) on \([t_2, \infty)\) satisfying
the expressions (3.31), for \(j, k = 1, 2, \ldots, n \). In order to do that, let

\[
||q_p - q_{p-1}||_t = \max_{s \geq t, 1 \leq i, j \leq n} |q_{p, ij}(s) - q_{p-1, ij}(s)|. \tag{3.61}
\]

Note that, from (3.33), we have

\[
q_{p+1, jk}(t) - q_{p, jk}(t) =
\begin{cases}
\int_t^\infty \left\{ \sum_{h=1}^{j-1} r_{jh}(s) [q_{p+1, hj}(s) - q_{p, hj}(s)] \\
+ \sum_{h=j+1}^n r_{jh}(s) [q_{p, hj}(s) - q_{p-1, hj}(s)] \right\} ds, & (j = k), \\
\int_{r_{jh}}^t \exp \left[\int_t^\tau \lambda_{jk}(\tau) d\tau \right] \left\{ \sum_{h=1}^{j-1} r_{jh}(s) [q_{p+1, hj}(s) - q_{p, hj}(s)] \\
+ \sum_{h=j+1}^n r_{jh}(s) [q_{p, hj}(s) - q_{p-1, hj}(s)] \right\} ds, & (j \neq k).
\end{cases}
\tag{3.62}
\]

We will establish:

Lemma 3.3.2. If \(t_2 \) is large enough such that

(a) \[
\int_t^{+\infty} s^{-1} \tilde{r}_2(s^{1/2}) ds < \frac{1}{4n}, \text{ for } t \geq t_2,
\]

and

(b) \[
\tilde{r}_1(\sqrt{t_2}) + \tilde{r}_2(t_2^{1/2}) < \frac{1}{2n^2 n K_1},
\]

then we have

\[
|q_{p+1, jk}(t) - q_{p, jk}(t)| \leq
\begin{cases}
\{2n[\tilde{r}_1(t_2) + \tilde{r}_2(t_2)] t^{-1/2j} + n \int_t^{+\infty} s^{-1} \tilde{r}_2(s^{1/2j}) ds \} ||q_p - q_{p-1}||_{t_2}, & (j = k), \\
nK_1 \{[\tilde{r}_1(t_2) + \tilde{r}_2(t_2)] \sqrt{\frac{1}{t}} + \tilde{r}_1(\sqrt{t}) + \tilde{r}_2(\sqrt{t}) \} ||q_p - q_{p-1}||_{t_2}, & (j > k), \\
2nK_1 \{[\tilde{r}_1(t_2) + \tilde{r}_2(t_2)] t^{-1/2j} + \tilde{r}_2(t_2^{1/2j}) \} ||q_p - q_{p-1}||_{t_2}, & (j < k),
\end{cases}
\tag{3.63}
\]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
for $t \geq t_2$ and $j, k = 1, 2, \ldots, n; p = 1, 2, \ldots$.

Now for t_2 satisfying Lemma 3.3.2, we have

$$|q_{p+1,j,k}(t) - q_{p,j,k}(t)| \leq \frac{1}{2}||q_{p} - q_{p-1}||_{t_2}$$

(3.64)

for $t \geq t_2$ and $j, k = 1, 2, \ldots, n; p = 1, 2, \ldots$ Hence,

$$||q_{p+1} - q_{p}||_{t_2} \leq \frac{1}{2}||q_{p} - q_{p-1}||_{t_2}$$

(3.65)

and

$$||q_{p+1} - q_{p}||_{t_2} \leq \frac{1}{2^p}||q_{1} - q_{0}||_{t_2} = \frac{1}{2^p}G$$

(3.66)

for $p = 1, 2, \ldots$. Therefore, the sequences $\{q_{p,j,k}(t)|p = 1, 2, \ldots\}$ converge uniformly to functions $q_{j,k}(t)$ on $[t_2, \infty)$, for $j, k = 1, 2, \ldots, n$, and furthermore, they satisfy the expressions (3.31).

Lemma 3.3.2 can be proved in a fashion similar to that for Lemma 3.3.1 with slight modifications.

STEP 7: In order to show that

$$\lim_{t \to \infty} q_{j,k}(t) = 0, \quad j, k = 1, 2, \ldots, n,$$

(3.67)

note from Lemma 3.3.1, we have

$$|q_{j,k}(t)| = \lim_{p \to \infty}|q_{p,j,k}(t)| \leq$$

$$\begin{cases} 2nG[\bar{r}_1(t_2) + \bar{r}_2(t_2)]t^{-\frac{1}{2^j}} + nG \int_{t}^{\infty} s^{-1}\bar{r}_2(s^{1/2^j})ds, & (j = k), \\ (1 + nG)K_1 \{[\bar{r}_1(t_2) + \bar{r}_2(t_2)]t^{-\frac{1}{2^j}} + \bar{r}_1(\sqrt{t}) + \bar{r}_2(\sqrt{t})\}, & (j > k), \\ 2(1 + nG)K_1 \{[\bar{r}_1(t_2) + \bar{r}_2(t_2)]t^{-\frac{1}{2^j}} + \bar{r}_2(t^{1/2^j})\}, & (j < k), \end{cases}$$

(3.68)

for $t \in [t_2, \infty)$, and $j, k = 1, 2, \ldots, n$. By (3.7), we have

$$\lim_{t \to \infty} \bar{r}_j(t) = 0, \quad (j = 1, 2).$$

(3.69)
Thus, by (3.9), (3.68) and (3.69), (3.67) follows. This completes the proof of Theorem 3.2.1. □

3.4 Examples

In this section, we will use some examples to illustrate the application of Theorem 3.2.1.

Example 1. Consider

\[
\frac{dy}{dt} = A(t)y, \quad (3.70)
\]

with

\[
A(t) = \begin{bmatrix}
1 & \frac{\sin(t)}{t \ln^2(t)} \\
\frac{\cos(t^2)}{t \ln(t)} & 1 + 2t^{-1}
\end{bmatrix},
\]

for \(t \in [2, +\infty) \).

\(A(t) \) satisfies Assumption 3.2.1 and 3.2.2 with \(\beta = 2 \), so by Theorem 3.2.1 we know that (3.70) can be changed into

\[
\frac{dz}{dt} = \begin{bmatrix}
1 & 0 \\
0 & 1 + 2t^{-1}
\end{bmatrix} z,
\]

by \(y = [I_2 + Q(t)]z \), where \(Q(t) \to 0 \), as \(t \to +\infty \).

Theorem L can not be applied to this example, because the corresponding \(R(t) \) does not satisfy \(R(t) \in L^1(I_o) \); Theorem LE can not be applied to this example, because the corresponding matrix \(A \) has multiple eigenvalues; Theorem WH and Theorem HL can not be applied to this example, because the corresponding \(A(t) \) does not satisfy Assumption 1.5; Theorem HX can not be applied to this
example, because the corresponding $A(t)$ does not satisfy Assumption 1.7; Theorem 2.1.1 and Theorem 2.1.2 cannot be applied to this example, because the corresponding $A(t)$ does not satisfy Assumption 2.1.2; Theorem 3.1.1 and Theorem 3.1.2 cannot be applied to this example, because the corresponding $V(t)$ does not satisfy $V''(t) \in L^1(J_0)$.

Example 2. Consider

$$\frac{dy}{dt} = A(t)y, \quad (3.71)$$

with

$$A(t) = \begin{bmatrix} 1 & 1 \\ t^{-3/2} & 1 \end{bmatrix},$$

for $t \in [1, +\infty)$.

System (3.71) can be changed into

$$\frac{d\tilde{y}}{dt} = \begin{bmatrix} 1 + t^{-3/4} + \frac{3}{8} t^{-1} & -\frac{3}{8} t^{-1} \\ -\frac{3}{8} t^{-1} & 1 - t^{-3/4} + \frac{3}{8} t^{-1} \end{bmatrix} \tilde{y}, \quad (3.72)$$

by

$$y = \begin{bmatrix} 1 & 1 \\ t^{-3/4} & -t^{-3/4} \end{bmatrix} \tilde{y}.$$

By Proposition 3.2.1, we know that (3.72) can be changed into

$$\frac{dz}{dt} = \begin{bmatrix} 1 + t^{-3/4} + \frac{3}{8} t^{-1} & 0 \\ 0 & 1 - t^{-3/4} - \frac{5}{8} t^{-1} \end{bmatrix} z.$$
by $\bar{y} = S(t)[I_2 + Q(t)]z$, where $Q(t) \rightarrow 0$, as $t \rightarrow +\infty$, and

$$S(t) = \begin{bmatrix} 1 & 0 \\ 0 & t^{-\delta} \end{bmatrix}, \text{ with } 0 < \delta < \frac{1}{4}.$$

For similar reasons to those in Example 1, Theorem L, Theorem LE, Theorem WH, Theorem HL, Theorem HX, Theorem 2.1.1 and Theorem 2.1.2 can not be applied to this example. Theorem 3.1.1 can not be applied to this example, because the eigenvalues of $A(t)$ do not satisfy Assumption 3.1.3. Note in this case $r = 1$. Theorem 3.1.2 can not be applied to this example, because the corresponding $R(t)$ does not satisfy condition (D) in Theorem 3.1.2. Note in this case $n_0 = 2$, to satisfy Assumption 3.1.5, we have to let $V(t)$ be the zero matrix and let $R(t)$ be

$$R(t) = \begin{bmatrix} 0 & 0 \\ t^{-3/2} & 0 \end{bmatrix}.$$
CHAPTER IV

THE DEFICIENCY INDEX OF CERTAIN FOURTH ORDER ORDINARY
SELF-ADJOINT DIFFERENTIAL OPERATORS

4.1 Introduction

Consider the self-adjoint ordinary differential operator

\[l(y) = \sum_{k=0}^{n} (-1)^k (p_{n-k}(t)y^{(k)})^{(k)} \quad (4.1) \]

defined on some interval \((a, b)\) of the real axis, where \(b\) is either finite or \(+\infty\), the coefficients \(p_k(t), \quad (k = 0, 1, 2, \ldots, n)\), are all real functions and \(p_0(t) > 0\).

The differential operator (4.1) is self-adjoint in the sense that for any test functions \(u, v \in C_0^\infty(a, b)\),

\[\int_a^b l(u)v dt = \int_a^b u\overline{v} dt. \]

Hence, when restricted to the test functions, \(l\) is a densely defined symmetric operator in the Hilbert-Lebesgue space \(L^2(a, b)\), so it has a symmetric closed extension designated by \(L_0\) and called the minimal operator associated with \(l\).

Let

\[k = \dim\{(L_0 - zI)D(L_0)\}^\perp, \quad m = \dim\{(L_0 - zI)D(L_0)\}^\perp, \quad \text{Im}\{z\} > 0, \]

where \(D(L_0)\) is the domain of \(L_0\). The pair \((k, m)\) is called the deficiency index of \(L_0\). The knowledge of the deficiency index will give information about the spectra of self-adjoint extensions. Since the differential operator (4.1) has real coefficients, we have \(k = m\). It is proved that, for (4.1), \(m\) can take any value between \(n\) and \(2n\). Thus the deficiency index problem for (4.1) is then the problem of determining the
integer m in $[n, 2n]$ for a certain class of real coefficients $p_k(t), \ (k = 0, 1, 2, \ldots, n)$. We may formulate this in the following way:

Find the dimension of the linear space of square integrable solutions to the equation

$$l(y) = zy, \quad Im\{z\} \neq 0. \quad (4.2)$$

In the late 1960's, W.N. Everitt ([15], [16]) first investigated the limit point problem for the following fourth order differential operator

$$y^{(4)} - (p_1 y')' + p_2 y.$$

Stimulated by the work of Everitt, many other authors, including A. Devinnatz ([7], [8]), S.P. Eastham ([11], [12], [13]), R.B. Paris and A.D. Wood [32], P.W. Walker [35], and A.D. Wood [37], studied the deficiency index problem of the minimal operator associated with the following fourth order self-adjoint differential operator

$$l(y) = y^{(4)}(t) - a\{t^\alpha y'(t)\}' + bt^\beta y(t), \quad t \in (1, \infty), \quad (4.3)$$

where a, and b are real numbers. In the $\alpha\beta$-plane, the solution of differential equation (4.2) for differential operator (4.3) has special properties on the half-ray $\beta = \alpha - 2, \alpha > 2$, and most methods in determining deficiency index fail to apply to this case.

In this chapter, we will use the result in Chapter III to investigate the deficiency index of the minimal operator associated with the following differential operator

$$l(y) = y^{(4)}(t) - a\{t^\alpha y'(t)\}' + c(t)t^\beta y(t), \quad t \in (1, \infty), \quad (4.4)$$
where \(c(t) = b(\ln t) \), and \(\alpha, \beta, \eta, a, b \) are any real numbers. We are especially interested in the half-ray \(\beta = \alpha - 2, \ \alpha > 2 \). The purpose of this Chapter is to show that the new result in Chapter III can be used to do a delicate analysis.

The main theorems of this Chapter are the following:

Theorem 4.1.1. If \(\beta < \alpha - 2, \ \alpha > 2, \text{ or } \beta = \alpha - 2, \ \alpha > 2, \ \eta < -1 \), then the deficiency index for the minimal operator associated with the self-adjoint operator \((4.4) \) is \((2, 2)\) when \(a > 0 \), and is \((3, 3)\) when \(a < 0 \).

Theorem 4.1.2. If \(\alpha - 2 < \beta < \frac{3\alpha - 2}{2}, \ \alpha > 2, \text{ or } \beta = \alpha - 2, \ \alpha > 2, \ \eta > 1 \), then the deficiency index for the minimal operator associated with the self-adjoint operator \((4.4) \) is \((2, 2)\) when \(a > 0, \ b > 0 \); and is \((3, 3)\) when \(a < 0, \ b < 0 \).

4.2 Asymptotic Analysis

By using quasi-derivatives [8], equation

\[
y^{(4)}(t) - a \{ t^\alpha y'(t) \}' + c(t)t^\beta y(t) = zy(t), \quad \text{Im}\{z\} \neq 0,
\]

can be changed equivalently to

\[
\frac{dU}{dt} = B(t)U,
\]

where

\[
B(t) = \begin{bmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & at^\alpha & 0 & -1 \\
c(t)t^\beta - z & 0 & 0 & 0
\end{bmatrix},
\]

\[
U(t) = (y, y', y^{(2)}, y^{[3]}),
\]

and

\[
y^{[3]} = at^\alpha y' - y^{(3)}.
\]
Let $Q_0(t)$ be a positive measurable function such that $1/Q_0(t)$ is integrable on every finite subinterval of $(0,\infty)$, but is divergent on the entire half-axis. Let us set

$$s(t) = \int_0^t \frac{d\tau}{Q_0(\tau)}, \quad (4.7)$$

and denote its inverse by $t = t(s)$. Further, if we set $V(s) = U(t(s))$, then (4.6) takes the form

$$\frac{dV}{dt} = [Q_0(t(s))B(t(s))]V. \quad (4.8)$$

Now let $Q_1(t)$ and $Q_2(t)$ be positive functions which are absolutely continuous on every finite subinterval of $(0,\infty)$. Set

$$C(s) = \text{diag}\{Q_2(t(s)), Q_1(t(s)), Q_1^{-1}(t(s)), Q_2^{-1}(t(s))\}, \quad (4.9)$$

and make the transformation:

$$V(s) = C(s)W(s), \quad (4.10)$$

then the differential equation (4.8) becomes

$$\frac{dW}{ds} = A(s)W, \quad (4.11)$$

where

$$A(s) = \begin{bmatrix}
-b_2 & d_1 & 0 & 0 \\
0 & -b_1 & a_0 & 0 \\
0 & a_1 & b_1 & -d_1 \\
a_2 - zQ_0Q_2 & 0 & 0 & b_2
\end{bmatrix},$$

and

$$a_0 = \frac{Q_0}{Q_1^2}, \quad a_1 = aQ_0Q_1^2t(s)^\alpha, \quad a_2 = c(t(s))Q_0Q_2^2t(s)^\beta,$$

$$b_k = \frac{1}{Q_k} \cdot \frac{dQ_k}{ds}, \quad (k = 1, 2), \quad d_1 = \frac{Q_0Q_1}{Q_2}.$$

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
If we choose

\[Q_0(t) = \frac{1}{\alpha_0 + 1} e^{-\alpha_0 t}, \quad (\alpha_0 \geq 0), \quad Q_k(t) = e^{-\alpha_k t}, \quad (k = 1, 2), \]

(4.12)

and take \(a_0(s) = 1, \quad a_1(s) = a, \quad d_1(s) = 1, \) then we have

\[\alpha_0 = \frac{1}{2} \alpha, \quad \alpha_1 = \frac{1}{4} \alpha, \quad \alpha_2 = \frac{3}{4} \alpha. \]

Thus \(A(s) \) is now of the form

\[
A(s) = \frac{1}{\alpha_0 + 1} \begin{bmatrix}
\frac{3\alpha}{4s} & 1 & 0 & 0 \\
0 & \frac{\alpha}{4s} & 1 & 0 \\
0 & a & -\frac{\alpha}{4s} & -1 \\
\frac{c(s)}{s^2} - \frac{s^2}{s} & 0 & 0 & -\frac{3\alpha}{4s}
\end{bmatrix},
\]

(4.13)

where

\[\gamma(\alpha, \beta) = \frac{4\alpha - 2\beta}{2 + \alpha} > 1, \quad \text{and} \quad \delta(\alpha) = \frac{4\alpha}{\alpha + 2} > 2, \quad \text{for} \quad \beta < \frac{3\alpha - 2}{2}, \quad \alpha > 2.\]

Write \(A(s) \) as

\[A(s) = A + V(s) \]

with

\[
A = \frac{1}{\alpha_0 + 1} \begin{bmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & a & 0 & -1 \\
0 & 0 & 0 & 0
\end{bmatrix},
\]

then \(A \) has a double eigenvalue at \(\lambda = 0 \) and two simple eigenvalues at \(\pm \sqrt{2}/(\alpha_0 + 1) \). Hence there is an invertible matrix \(P \) such that

\[
P^{-1}AP = \Lambda = \begin{bmatrix}
\lambda_1 & 0 & 0 & 0 \\
0 & \lambda_2 & 0 & 0 \\
0 & 0 & 1/(\alpha_0 + 1) \\
0 & 0 & 0 & 0
\end{bmatrix},
\]
where \(\lambda_1 = -\lambda_2 = \sqrt{\alpha}/(\alpha_0 + 1) \).

Denote the eigenvalues of \(A(s) \) by \(\lambda_k(s) \), \(k = 1, 2, 3, 4 \), solve

\[
(\alpha_0 + 1)A(s)P(s) = P(s)\tilde{A}(s), \quad (4.14)
\]

where

\[
\tilde{A}(s) = \begin{bmatrix}
\tilde{\lambda}_1(s) & 0 & 0 & 0 \\
0 & \tilde{\lambda}_2(s) & 0 & 0 \\
0 & 0 & \tilde{\lambda}_3(s) & 1 \\
0 & 0 & 0 & \tilde{\lambda}_4(s)
\end{bmatrix},
\]

with \(\tilde{\lambda}_k(s) = (\alpha_0 + 1)\lambda_k(s), \ k = 1, 2, 3, 4 \), we have

\[
P(s) = \begin{bmatrix}
1 & 1 & 1 & 0 \\
\bar{\lambda}_1(s) - \frac{3\alpha}{4s} & \bar{\lambda}_2(s) - \frac{3\alpha}{4s} & \bar{\lambda}_3(s) - \frac{3\alpha}{4s} & 1 \\
f_1(s) & f_2(s) & f_3(s) & -\frac{\alpha}{s} \\
g_1(s) & g_2(s) & g_3(s) & a + \left(\frac{\alpha}{4s}\right)^2 - \bar{\lambda}_4^2(s)
\end{bmatrix}, \quad (4.15)
\]

where

\[
f_k(s) = \bar{\lambda}_k^2(s) - \frac{\alpha}{s} \bar{\lambda}_k(s) + 3\left(\frac{\alpha}{4s}\right)^2, \quad g_k(s) = \frac{s^\gamma c(s) - zs^\gamma}{s^{\delta + \gamma}(\bar{\lambda}_k(s) + \frac{3\alpha}{4s})}, \quad k = 1, 2, 3.
\]

Now let us compute \(\bar{\lambda}_k(s), \ k = 1, 2, 3, 4 \). The characteristic equation of the matrix \((\alpha_0 + 1)A(s)\) is

\[
\lambda^4 - \left\{\frac{5}{8}(\alpha)s^2 + a\right\}\lambda^2 + \left(\frac{3\alpha}{4s}\right)^2\left\{\left(\frac{\alpha}{4s}\right)^2 + a\right\} + \frac{c(s)}{s^\gamma} - \frac{z}{s^\delta} = 0. \quad (4.16)
\]

Case I: When \(\beta < \alpha - 2, \ \alpha > 2 \), or \(\beta = \alpha - 2, \ \alpha > 2, \ \eta < -1 \), by solving above equation, we can have

\[
\bar{\lambda}^2(s) = \frac{1}{2}\left\{\frac{5}{8}(\alpha)s^2 + a\right\}[1 \pm \left\{1 - \frac{4}{a^2}(3\alpha/4s)^2 + \frac{c(s)}{s^\gamma} - \frac{z}{s^\delta} + h(s)\right\}^{1/2}], \quad (4.17)
\]
where \(h(s) = O\left(\frac{1}{s^r}\right) \). If we choose the plus sign in (4.17) and use Taylor expansion, we have

\[
\tilde{\lambda}^2(s) = a + h_1(s),
\]

where \(h_1(s) = O\left(\frac{1}{s^r}\right) \) and \(h_1'(s) = O\left(\frac{1}{s^r}\right) \). If we choose the negative sign in (4.17) and use Taylor expansion again, we have

\[
\tilde{\lambda}^2(s) = \left(\frac{3\alpha}{4s}\right)^2 + h_2(s),
\]

where \(h_2(s) = o\left(\frac{1}{s^r}\right) \) and \(h_2'(s) = o\left(\frac{1}{s^r}\right) \). Thus the eigenvalues of \((\alpha_0 + 1)A(s)\) are

\[
\tilde{\lambda}_1(s) = -\tilde{\lambda}_2(s) = \sqrt{a} + h_3(s),
\]

and

\[
\tilde{\lambda}_3(s) = -\tilde{\lambda}_4(s) = \frac{3\alpha}{4s} + h_4(s),
\]

where \(h_3(s) = O\left(\frac{1}{s^r}\right) \), \(h_3'(s) = O\left(\frac{1}{s^r}\right) \), \(h_4(s) = o\left(\frac{1}{s^r}\right) \) and \(h_4'(s) = o\left(\frac{1}{s^r}\right) \). Hence,

\[
P(s) = P + O\left(\frac{1}{s}\right) \quad \text{with} \quad P = \begin{bmatrix} 1 & 1 & 1 & 0 \\ \sqrt{a} & -\sqrt{a} & 0 & 1 \\ a & a & 0 & 0 \\ 0 & 0 & 0 & a \end{bmatrix}.
\] (4.18)

It follows that for large \(s \), \(P(s) \) is invertible, and

\[
P^{-1}(s) = P^{-1} + O\left(\frac{1}{s}\right)
\] (4.19)

with

\[
P^{-1} = \frac{1}{2a\sqrt{a}} \begin{bmatrix} 0 & a & \sqrt{a} & -1 \\ 0 & -a & \sqrt{a} & 1 \\ 2a\sqrt{a} & 0 & -2\sqrt{a} & 0 \\ 0 & 0 & 0 & 2\sqrt{a} \end{bmatrix}.
\]
Make the transformation

\[W(s) = P(s)X(s), \quad (4.20) \]

then the differential equation (4.11) with \(A(s) \) given by (4.13) becomes

\[\frac{dX}{ds} = \{ \tilde{A}(s)/(a_0 + 1) - P^{-1}(s)P'(s) \}X. \quad (4.21) \]

Notice that \(2 \leq \gamma < \delta \). Thus

\[P'(s) = \begin{bmatrix}
0 & 0 & 0 & 0 \\
O(\frac{1}{s^2}) & O(\frac{1}{s^2}) & O(\frac{1}{s^2}) & 0 \\
O(\frac{1}{s^2}) & O(\frac{1}{s^2}) & O(\frac{1}{s^2}) & O(\frac{1}{s^2}) \\
O(\frac{\ln(s)}{s^2}) & O(\frac{\ln(s)}{s^2}) & O(\frac{\ln(s)}{s^2}) & O(\frac{1}{s^2})
\end{bmatrix}, \]

and

\[P^{-1}(s)P'(s) = \begin{bmatrix}
O(\frac{1}{s^2}) & O(\frac{1}{s^2}) & O(\frac{1}{s^2}) & O(\frac{1}{s^2}) \\
O(\frac{1}{s^2}) & O(\frac{1}{s^2}) & O(\frac{1}{s^2}) & O(\frac{1}{s^2}) \\
O(\frac{1}{s^2}) & O(\frac{1}{s^2}) & O(\frac{1}{s^2}) & O(\frac{1}{s^2}) \\
O(\frac{\ln(s)}{s^2}) & O(\frac{\ln(s)}{s^2}) & O(\frac{\ln(s)}{s^2}) & O(\frac{1}{s^2})
\end{bmatrix}. \quad (4.22) \]

If we now take

\[Q(s) = \text{diag}\{1, 1, 1, \frac{1}{\ln(lns)}\}, \]

and set

\[X(s) = Q(s)Z(s), \quad (4.23) \]

then (4.21) becomes

\[\frac{dZ}{ds} = \{ \text{diag}\{\sqrt{a}, -\sqrt{a}, 3\alpha, -\frac{3\alpha}{4s} + \frac{\ln(lns) + (lns)^{-1}}{\ln(lns)} \} + R(s) \}Z, \quad (4.24) \]
where

\[
R(s) = \begin{bmatrix}
O(\frac{1}{s^{1.5}}) & O(\frac{1}{s^{1.5}}) & O(\frac{1}{s^{1.5}}) & O(\frac{1}{s^{1.5}}) \\
O(\frac{1}{s^{1.5}}) & O(\frac{1}{s^{1.5}}) & O(\frac{1}{s^{1.5}}) & O(\frac{1}{s^{1.5}}) \\
O(\frac{1}{s^{1.5}}) & O(\frac{1}{s^{1.5}}) & O(\frac{1}{s^{1.5}}) & O(\frac{\ln(\ln s)}{s}) \\
O(\frac{\ln(\ln s)}{s^{1.5}}) & O(\frac{\ln(\ln s)}{s^{1.5}}) & O(\frac{\ln(\ln s)}{s^{1.5}}) & O(\frac{1}{s^{0.5}})
\end{bmatrix}
\]

Notice \(t = s^{\frac{1}{2}+\gamma} \), we have \(c(s) = b(\frac{2}{a+2})^\eta(\ln s)^{\eta} \), it follows that

\[
\text{for } \gamma > 2, \quad c(s)\ln(\ln s)/s^{\gamma-1} \text{ is integrable,} \quad (4.25)
\]

and

\[
\text{for } \gamma = 2, \quad \eta < -1, \quad \frac{c(s)\ln(\ln s)}{s} \text{ is integrable.} \quad (4.26)
\]

So \(R(s) \) satisfies the Assumption 3.2.2 of Theorem 3.2.1. Hence if \(a > 0 \), then from (4.25) and (4.26), by Theorem 3.2.1, there exists a \(4 \times 4 \) matrix \(G(s) \) with \(\lim_{s \to +\infty} G(s) = 0 \) such that the transformation:

\[
Z(s) = (I_4 + G(s))T(s), \quad (4.27)
\]

changes system (4.24) into

\[
\frac{dT}{ds} = \text{diag}\{\sqrt{a}, -\sqrt{a}, \frac{3\alpha}{4s}, -\frac{3\alpha}{4s} + \frac{\ln(\ln s) + (\ln s)^{-1}}{s\ln(\ln s)}\}T. \quad (4.28)
\]

In case \(a < 0 \), the system (4.24) does not satisfy Assumption 3.2.2 of Theorem 3.2.1, but from (4.25), (4.26), and the proof of Theorem 3.2.1, it is not difficult to see that there still exists a \(4 \times 4 \) matrix \(G(s) \) with \(\lim_{s \to +\infty} G(s) = 0 \) such that the transformation (4.27) changes system (4.24) into (4.28). Therefore when \(\beta < \alpha - 2, \ \alpha > 2, \text{ or } \beta = \alpha - 2, \ \alpha > 2, \ \eta < -1, \) we have
\[Z(s) = \begin{bmatrix}
(1 + o(1))Z_1(s) & o(1)Z_2(s) & o(1)Z_3(s) & o(1)Z_4(s) \\
o(1)Z_1(s) & (1 + o(1))Z_2(s) & o(1)Z_3(s) & o(1)Z_4(s) \\
o(1)Z_1(s) & o(1)Z_2(s) & (1 + o(1))Z_3(s) & o(1)Z_4(s) \\
o(1)Z_1(s) & o(1)Z_2(s) & o(1)Z_3(s) & (1 + o(1))Z_4(s)
\end{bmatrix},
\]

where

\[Z_1(s) = (1 + o(1))\exp\{\sqrt{a}(s - s_0)\}, \quad Z_3(s) = (1 + o(1))\left(\frac{s}{s_0}\right)^{3a}, \]
\[Z_2(s) = (1 + o(1))\exp\{-\sqrt{a}(s - s_0)\}, \quad Z_4(s) = (1 + o(1))\ln\left(\frac{\ln s}{\ln s_0}\right)\left(\frac{s_0}{s}\right)^{3a-1}.\]

Since

\[X(s) = Q(s)Z(s), \quad W(s) = P(s)X(s), \quad V(s) = C(s)W(s), \]
\[U(t) = V(s^{-1}(t)) \quad \text{and} \quad u_1(t) = y(t), \]

under the giving conditions we have the following four linear independent asymptotic solutions for equation (4.5):

\[y_1(t) = (1 + o(1))t^{-\frac{3a}{4}}\exp\{\sqrt{a}(t_0^{\frac{3a+2}{2}} - t^{\frac{3a+2}{2}})\}, \]
\[y_2(t) = (1 + o(1))t^{-\frac{3a}{4}}\exp\{\sqrt{a}(t_0^{\frac{3a+2}{2}} - t^{\frac{3a+2}{2}})\}, \]
\[y_3(t) = (1 + o(1))t^{-\frac{3a}{4}}\left(\frac{t}{t_0}\right)^{\frac{3n(a+2)}{8}}\ln(\ln t). \]

and

\[y_4(t) = o(1)t^{-\frac{3a}{4}}\left(\frac{t_0}{t}\right)^{\frac{(3a-4)(n+3)}{8}}\ln(\ln t). \] \hspace{1cm} (4.29)

Case II: When \(\alpha - 2 < \beta < \frac{3a-2}{2}, \quad \alpha > 2, \text{ or } \beta = \alpha - 2, \quad \alpha > 2, \quad \eta > 0, \) by solving (4.16), we can have

\[\tilde{\lambda}^2(s) = \frac{1}{2}\left[\frac{5}{2}\alpha^2 + a\right][1 \pm \{1 - \frac{4}{a^2}(\frac{3\alpha}{4s})^2 + \frac{c(s)}{s^\gamma} - \frac{z}{s^2} + h(s)\}^\frac{1}{2}], \] \hspace{1cm} (4.30)
where \(h(s) = O(\frac{c(s)}{s^7}) \), \(1 < \gamma \leq 2 \). By Taylor expansion, if we choose the plus sign in (4.30), we have

\[
\tilde{\lambda}^2(s) = a + h_1(s),
\]

where \(h_1(s) = O(\frac{c(s)}{s^7}) \) and \(h'_1(s) = O(\frac{c(s)}{s^{1+7}}) \); and if we choose the negative sign in (4.30), we have

\[
\tilde{\lambda}^2(s) = \left(\frac{c(s)}{as^7}\right) + h_2(s),
\]

where \(h_2(s) = o(\frac{1}{s^2}) \) and \(h'_2(s) = o(\frac{1}{s^2}) \). Thus the eigenvalues of \((\alpha_0 + 1)A(s) \) are

\[
\tilde{\lambda}_1(s) = -\tilde{\lambda}_2(s) = \sqrt{a} + h_3(s), \quad (4.31)
\]

and

\[
\tilde{\lambda}_3(s) = -\tilde{\lambda}_4(s) = \sqrt{\frac{c(s)}{as^7}} + h_4(s), \quad (4.32)
\]

where \(h_3(s) = O(\frac{c(s)}{s^7}) \), \(h'_3(s) = O(\frac{c(s)}{s^{1+7}}) \), \(h_4(s) = O(\frac{1}{s^{2-\gamma/2}c(s)}) \), and \(h'_4(s) = O(\frac{1}{s^{2-\gamma/2}c(s)}) \). Hence,

\[
P(s) = P + O(\sqrt{\frac{c(s)}{s^7}}) \quad \text{with} \quad P = \begin{bmatrix}
1 & 1 & 1 & 0 \\
\sqrt{a} & -\sqrt{a} & 0 & 1 \\
a & a & 0 & 0 \\
0 & 0 & 0 & a
\end{bmatrix}, \quad (4.33)
\]

it follows that for large \(s \), \(P(s) \) is invertible, and

\[
P^{-1}(s) = P^{-1} + O(\sqrt{\frac{c(s)}{s^7}}) \quad (4.34)
\]

with

\[
P^{-1} = \frac{1}{2a\sqrt{a}} \begin{bmatrix}
0 & a & \sqrt{a} & -1 \\
0 & -a & \sqrt{a} & 1 \\
2a\sqrt{a} & 0 & -2\sqrt{a} & 0 \\
0 & 0 & 0 & 2\sqrt{a}
\end{bmatrix}
\]
Make the transformation

\[W(s) = P(s)X(s), \quad (4.35) \]

then the differential equation (4.11) with \(A(s) \) given by (4.13) becomes

\[\frac{dX}{ds} = \{ \tilde{A}(s)/(\alpha_0 + 1) - P^{-1}(s)P'(s) \} X. \quad (4.36) \]

Notice \(\gamma < \delta \), we have

\[
P'(s) =
\begin{bmatrix}
0 & 0 & 0 & 0 \\
O(\frac{1}{s^2}) & O(\frac{1}{s^3}) & o(\frac{1}{s^{3/2}}) & 0 \\
O(\frac{1}{s^2}) & O(\frac{1}{s^3}) & o(\frac{1}{s^{3/2}}) & O(\frac{1}{s}^3) \\
O(\frac{|s|^{2/3}}{s^{4/3}}) & O(\frac{|s|^{1/3}}{s^{2/3}}) & O(\frac{|s|^{1/3}}{s^{1/3}}) & o(\frac{1}{s})
\end{bmatrix}
\]

Thus

\[
P^{-1}(s)P'(s) =
\begin{bmatrix}
O(\frac{1}{s^2}) & O(\frac{1}{s^3}) & o(\frac{1}{s^{3/2}}) & O(\frac{1}{s}^3) \\
O(\frac{1}{s^2}) & O(\frac{1}{s^3}) & o(\frac{1}{s^{3/2}}) & O(\frac{1}{s}^3) \\
O(\frac{1}{s^2}) & O(\frac{1}{s^3}) & o(\frac{1}{s^{3/2}}) & O(\frac{1}{s}^3) \\
O(\frac{|s|^{2/3}}{s^{4/3}}) & O(\frac{|s|^{1/3}}{s^{2/3}}) & O(\frac{|s|^{1/3}}{s^{1/3}}) & o(\frac{1}{s})
\end{bmatrix}
\]

Suppose that \(T(s) \) is a 4 \times 4 differentiable matrix with \(T(s) \to 0 \) as \(s \to \infty \) such that for all sufficiently large \(s \), \(I + T(s) \) has an inverse. So we may write

\[
\{ I + T(s) \}^{-1} = I - T(s) + T^2(s) \{ I + T(s) \}^{-1}.
\]

Make the transformation \(X(s) = (I + T(s))Y(s) \) so that (4.36) becomes

\[
\frac{dY}{ds} = \{ \Lambda_0(s) + [\Lambda_0, T](s) - P(s)^{-1}P'(s) + R_1(s) \} Y, \quad (4.38)
\]

where \(\Lambda_0 = \tilde{A}/(\alpha_0 + 1) \), \([\Lambda_0, T] = \Lambda_0 T - T \Lambda_0 \), the Lie product, and

\[
R_1(s) = -T \Lambda_0 T + T^2(I + T)^{-1} \Lambda_0 (I + T) + TP^{-1}P'T + \\
+ [T, P^{-1}P'] + T^2(I + T)^{-1}P^{-1}P'(I + T) - (I + T)^{-1}T'. \quad (4.39)
\]
Let $t_{jk}(s)$ be the entries of $T(s)$, and take

$$t_{jk}(s) = 0 \text{ for } j = 1, 2, 3, \quad k = 1, 2, 3, 4, \quad \text{and} \quad t_{44}(s) = 0.$$

Then we get

$$[\Lambda_0, T] = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
t_{41}/(\alpha_0 + 1) & t_{42}/(\alpha_0 + 1) & t_{43}/(\alpha_0 + 1) & 0 \\
(\lambda_4 - \lambda_1)t_{41} & (\lambda_4 - \lambda_2)t_{42} & (\lambda_4 - \lambda_3)t_{43} & -t_{43}/(\alpha_0 + 1)
\end{bmatrix}, \quad (4.41)$$

with all quantities being evaluated at s. Choose

$$t_{4k}(s) = \frac{[P(s)^{-1}P'(s)]_{4k}}{\lambda_4(s) - \lambda_k(s)}, \quad (1 \leq k \leq 3). \quad (4.42)$$

Recalling the order of magnitude of $P(s)^{-1}P'(s)$, noting the values of $\lambda_k(s)$, and the values of $\tilde{\lambda}_k(s)$ given by (4.31), (4.32), and the form of $g_k(s)$ given after (4.15), we see that

$$t_{4k}(s) = O(|c(s)|/s^{1+\gamma}), \quad \text{and} \quad t'_{4k}(s) = O(|c(s)|/s^{2+\gamma}), \quad \text{for} \quad k = 1, 2.$$

For $t_{43}(s)$, we have

$$t_{43}(s)/(\alpha_0 + 1) = \frac{g_3(s)}{a(\tilde{\lambda}_4(s) - \tilde{\lambda}_3(s))} = \frac{\gamma}{4s} + h(s),$$

where $h(s)$ is integrable.

Let us set

$$R_2(s) = [\Lambda_0, T](s) - P(s)^{-1}P'(s) + R_1(s) + \text{diag}\{0, 0, -\frac{\gamma}{4s}, \frac{\gamma}{4s}\}.$$

We see that certainly the first three elements of the last row of $R_2(s)$ which are in fact the first three elements of the last row of $R_1(s)$ are of $O(1/s^2)$, and the other elements of $R_2(s)$ are integrable. Thus (4.38) can be written as

$$\frac{dY}{ds} = \{\Lambda_1(s) + R_2(s)\}Y, \quad (4.43)$$
where

\[
\Lambda_1(s) = \begin{bmatrix}
 \lambda_1(s) & 0 & 0 & 0 \\
 0 & \lambda_2(s) & 0 & 0 \\
 0 & 0 & \lambda_3(s) + \frac{s}{\alpha_0 + 1} & 1/(\alpha_0 + 1) \\
 0 & 0 & 0 & \lambda_4(s) - \frac{s}{\alpha_0 + 1}
\end{bmatrix}.
\]

Repeat the operation we have performed above, i.e. make a transformation of the form \((I + T(s))\), but using the matrix \(R_2(s)\) instead of \(-P(s)^{-1}P'(s)\). Because \(\lambda_4 - \lambda_3 - \frac{s}{\alpha_0 + 1}\) is asymptotic to \(d\frac{\log(s)}{s^\gamma}\), where \(d\) is some non-zero constant and \(\gamma \leq 2\), we see that

(i) if \(\gamma < 2\), we arrive at a differential equation

\[
\frac{dY}{ds} = \{\Lambda_1(s) + R(s)\}Y,
\]

where the first three elements of the last row of \(R(s)\) are \(o(1/s^\xi)\) (\(\xi > 2\)) and the other elements of \(R(s)\) are integrable;

(ii) \(\gamma = 2\), we arrive at a differential equation

\[
\frac{dY}{ds} = \{\Lambda_2(s) + R(s)\}Y,
\]

with

\[
\Lambda_2(s) = \begin{bmatrix}
 \lambda_1(s) & 0 & 0 & 0 \\
 0 & \lambda_2(s) & 0 & 0 \\
 0 & 0 & \lambda_3(s) + \frac{d}{s(s+c)^{1/2}} & 1/(\alpha_0 + 1) \\
 0 & 0 & 0 & \lambda_4(s) - \frac{1}{2s} - \frac{d}{s(s+c)^{1/2}}
\end{bmatrix},
\]

where \(d\) is a positive number, the first two elements of the last row of \(R(s)\) are \(o(1/s^\xi)\), \((\xi > 2)\), \(r_{43}(s) = O(1/[\log(s)^{n}])\) and the other elements of \(R(s)\) are integrable.

In case (i), we take

\[
Q(s) = \text{diag}\{1,1,1,\frac{1}{s^\mu}\}, \text{ with } \xi/2 > \mu > 1,
\]
and set

\[Y(s) = Q(s)Z(s), \quad (4.46) \]

then we have

\[\frac{dZ}{ds} = \left[\text{diag}\left\{ \sqrt{a}, -\sqrt{a}, \sqrt{\frac{c(s)}{as^\gamma}}, \frac{\gamma}{4s}, -\sqrt{\frac{c(s)}{as^\gamma}}, \frac{\gamma}{4s} + \frac{\mu}{s} \right\} + \hat{R}(s) \right] Z, \quad (4.47) \]

where \(\xi > 2 \), so \(\hat{R}(s) \in L^1 \). Hence by Theorem L, there exists a \(4 \times 4 \) matrix \(G(s) \) with \(\lim_{s \to +\infty} G(s) = 0 \) such that the transformation:

\[Z(s) = (I_4 + G(s))D(s), \quad (4.48) \]

changes system (4.47) into

\[\frac{dD}{ds} = \text{diag}\left\{ \sqrt{a}, -\sqrt{a}, \sqrt{\frac{c(s)}{as^\gamma}}, \frac{\gamma}{4s}, -\sqrt{\frac{c(s)}{as^\gamma}}, \frac{\gamma}{4s} + \frac{\mu}{s} \right\} D. \quad (4.49) \]

Therefore when \(\alpha - 2 < \beta < \frac{3\alpha - 2}{2}, \alpha > 2 \), we have

\[
Z(s) = \\
\begin{pmatrix}
(1 + o(1))Z_1(s) & o(1)Z_2(s) & o(1)Z_3(s) & o(1)Z_4(s) \\
o(1)Z_1(s) & (1 + o(1))Z_2(s) & o(1)Z_3(s) & o(1)Z_4(s) \\
o(1)Z_1(s) & o(1)Z_2(s) & (1 + o(1))Z_3(s) & o(1)Z_4(s) \\
o(1)Z_1(s) & o(1)Z_2(s) & o(1)Z_3(s) & (1 + o(1))Z_4(s)
\end{pmatrix},
\]

where

\[Z_1(s) = (1 + o(1))\exp\{\sqrt{a}(s - s_0)\}, \quad Z_2(s) = (1 + o(1))\exp\{-\sqrt{a}(s - s_0)\}, \]

\[Z_3(s) = (1 + o(1))\left(\frac{s}{s_0}\right)^{\gamma/4}\exp\left\{ \int_{s_0}^{s} \frac{c(x)}{ax^\gamma} dx \right\}, \]

\[Z_4(s) = (1 + o(1))\left(\frac{s}{s_0}\right)^{\mu-\gamma/4}\exp\left\{ -\int_{s_0}^{s} \frac{\gamma}{ax^\gamma} dx \right\}. \]

Since

\[Y(s) = Q(s)Z(s), \quad X(s) = (I + T(s))Y(s), \quad W(s) = P(s)X(s), \]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
under the giving conditions, we have the following four linear independent asymptotic solutions for equation (4.5):

\[y_1(t) = (1 + o(1))t^{-\frac{3}{4}} \exp \left\{ \sqrt{a} \left(t^{\frac{\alpha+2}{4}} - t_0^{\frac{\alpha+2}{4}} \right) \right\}, \]
\[y_2(t) = (1 + o(1))t^{-\frac{3}{4}} \exp \left\{ \sqrt{a} \left(t_0^{\frac{\alpha+2}{4}} - t^{\frac{\alpha+2}{4}} \right) \right\}, \]
\[y_3(t) = (1 + o(1))t^{-\frac{3}{4}} \left(\frac{t}{t_0} \right)^{(\frac{\alpha+2}{4})} \exp \left\{ \int_{t_0}^{\frac{t}{t_0}} \sqrt{\frac{c(x^{\frac{\alpha+2}{4}})}{ax^{\gamma(\alpha+2)/2}}} dx \right\}, \]
\[y_4(t) = o(1)t^{-\frac{3}{4}} \left(\frac{t}{t_0} \right)^{(\frac{4s}{\alpha})} \exp \left\{ - \int_{t_0}^{\frac{t}{t_0}} \sqrt{\frac{c(x^{\frac{\alpha+2}{4}})}{ax^{\gamma(\alpha+2)/2}}} dx \right\} . \]

In case (ii), we take

\[Q(s) = \text{diag}\{1, 1, 1, \frac{1}{\text{sln}(lns)}\}, \]

and set

\[Y(s) = Q(s)Z(s), \quad (4.50) \]

then from (4.45) we have

\[\frac{dZ}{ds} = [\text{diag}\{\sqrt{a}, -\sqrt{a}, \lambda_3^*(s), \lambda_4^*(s)\} + \tilde{R}(s)]Z, \quad (4.51) \]

where

\[\lambda_3^*(s) = \sqrt{\frac{c(s)}{as^7}} + \frac{1}{2s} + \frac{d}{s(c(s))^{1/2}}, \]
\[\lambda_4^*(s) = -\sqrt{\frac{c(s)}{as^7}} + \frac{1}{2s} + \left(\frac{\text{sln}(lns)}{\text{sln}(lns)}\right) - \frac{d}{s(c(s))^{1/2}}. \]
and when \(\eta > 1 \), \(R(s) \) satisfies the Assumption 3.2.2 of Theorem 3.2.1. Hence if \(a > 0 \), \(b > 0 \), by Theorem 3.2.1, there exists a \(4 \times 4 \) matrix \(G(s) \) with \(\lim_{s \to 0} G(s) = 0 \) such that the transformation:

\[
Z(s) = (I_4 + G(s))D(s),
\]

changes system (51) into

\[
\frac{dD}{ds} = \text{diag}\{\sqrt{\alpha}, -\sqrt{\alpha}, \lambda^*_3(s), \lambda^*_4(s)\}D.
\]

If \(a < 0 \), \(b < 0 \), as mentioned in case I, by following the proof of Theorem 3.2.1, equation (4.53) can also be obtained. Therefore when \(\beta = \alpha - 2 \), \(\alpha > 2 \), \(ab > 0 \), \(\eta > 1 \), we have

\[
Z(s) = \begin{bmatrix}
(1 + o(1))Z_1(s) & o(1)Z_2(s) & o(1)Z_3(s) & o(1)Z_4(s) \\
o(1)Z_1(s) & (1 + o(1))Z_2(s) & o(1)Z_3(s) & o(1)Z_4(s) \\
o(1)Z_1(s) & o(1)Z_2(s) & (1 + o(1))Z_3(s) & o(1)Z_4(s) \\
o(1)Z_1(s) & o(1)Z_2(s) & o(1)Z_3(s) & (1 + o(1))Z_4(s)
\end{bmatrix},
\]

where

\[
Z_1(s) = (1 + o(1))\exp\{\sqrt{\alpha}(s - s_0)\}, \quad Z_2(s) = (1 + o(1))\exp\{-\sqrt{\alpha}(s - s_0)\},
\]

\[
Z_3(s) = (1 + o(1))\left(\frac{s}{s_0}\right)^{1/2}\exp\left\{\int_{s_0}^{s} \frac{d}{x(c(x))^{1/2}} + \sqrt{\frac{c(x)}{ax^2}}dx\right\},
\]

\[
Z_4(s) = (1 + o(1))\frac{\ln(\ln s)}{\ln(\ln s_0)}\left(\frac{s}{s_0}\right)^{1/2}\exp\left\{-\int_{s_0}^{s} \frac{d}{x(c(x))^{1/2}} - \int_{s_0}^{s} \sqrt{\frac{c(x)}{ax^2}}dx\right\}.
\]

Since

\[
Y(s) = Q(s)Z(s), \quad X(s) = (I + T(s))Y(s), \quad W(s) = P(s)X(s),
\]

\[
V(s) = C(s)W(s), \quad U(t) = V(s^{-1}(t)) \text{ and } u_1(t) = y(t),
\]
under the given conditions we have the following four linear independent asymptotic solutions for equation (4.5):

\[y_1(t) = (1 + o(1))t^{-\frac{3\alpha}{2}} \exp\{\sqrt{a}(t_0^{\frac{\alpha+2}{2}} - t_0^{\frac{\alpha+2}{2}})\}, \]

\[y_2(t) = (1 + o(1))t^{-\frac{3\alpha}{2}} \exp\{\sqrt{a}(t_0^{\frac{\alpha+2}{2}} - t_0^{\frac{\alpha+2}{2}})\}, \]

\[y_3(t) = (1 + o(1))t^{-\frac{3\alpha}{2}} \left(\frac{t}{t_0}\right)^{\frac{\alpha+2}{2}} \exp\left\{\int_{t_0}^{t_{0,0}} \frac{d}{x^{\frac{\alpha+2}{2}}(c(x^{\frac{\alpha+2}{2}}))^{1/2}} \right\} + \frac{c(x^{\frac{\alpha+2}{2}})}{ax^{\alpha+2}} \left(\frac{\alpha+2}{2}\right) x^{\frac{\alpha+2}{2}} dx \}, \]

and \(y_4(t) = \)

\[o(1)t^{-\frac{3\alpha}{2}} \left(\frac{t}{t_0}\right)^{\frac{\alpha+2}{2}} \exp\left\{\int_{t_0}^{t_{0,0}} \frac{d}{x^{\frac{\alpha+2}{2}}(c(x^{\frac{\alpha+2}{2}}))^{1/2}} \right\} + \frac{c(x^{\frac{\alpha+2}{2}})}{ax^{\alpha+2}} \left(\frac{\alpha+2}{2}\right) x^{\frac{\alpha+2}{2}} dx \}. \]

4.3 Deficiency Index

Using the previous asymptotic results, we can now determine the deficiency index for the minimal operator associated with the self-adjoint operator (4.4).

(1) In case \(\beta < \alpha - 2, \alpha > 2, \) or \(\beta = \alpha - 2, \alpha > 2, \eta < -1 \):

For \(\alpha > 0 \), we have \(\sqrt{a} > 0 \), so \(y_1(t) \) is not square integrable, but \(y_2(t) \) is square integrable. The square integrability of \(y_3(t) \) and \(y_4(t) \) is independent of \(a \). When \(\alpha > 2 \), we have \(y_3(t) \) is not square integrable, but \(y_4(t) \) is square integrable. Since no non-trivial combination of \(y_1(t) \) and \(y_3(t) \) is square integrable, it follows that in this case the deficiency index is (2, 2).

For \(\alpha < 0 \), we have \(\sqrt{a} \) pure imaginary number, so both \(y_1(t) \) and \(y_2(t) \) are square integrable. So in this case the deficiency index is (3, 3).

This proves Theorem 4.1.1, that is if \(\beta < \alpha - 2, \alpha > 2, \) or \(\beta = \alpha - 2, \alpha > 2, \eta < -1 \), then the deficiency index for the minimal operator associated with the self-adjoint operator (4.4) is (2, 2) when \(a > 0 \), and is (3, 3) when \(a < 0 \).

(2) In case \(\alpha - 2 < \beta < \frac{3\alpha-2}{2}, \alpha > 2, \) or \(\beta = \alpha - 2, \alpha > 2, ab > 0, \eta > 1 \).
For $a > 0, \ b > 0$, we have $\sqrt{a} > 0$, so $y_1(t)$ is not square integrable, but $y_2(t)$ is square integrable. We can also see that $y_3(t)$ is not square integrable, but $y_4(t)$ is square integrable. Since no non-trivial combination of $y_1(t)$ and $y_3(t)$ is square integrable, it follows that in this case the deficiency index is $(2, 2)$.

For $a < 0, \ b < 0$, we have \sqrt{a} pure imaginary number, so both $y_1(t)$ and $y_2(t)$ are square integrable. Since in this case $y_3(t)$ is not square integrable, and $y_4(t)$ is square integrable, it follows that in this case the deficiency index is $(3, 3)$.

This proves Theorem 4.1.2, that is if $\alpha = 2 < \beta < \frac{3\alpha-2}{2}, \alpha > 2$, or $\beta = \alpha - 2, \ \alpha > 2, \ \eta > 1$, then when $a > 0, \ b > 0$, the deficiency index for the minimal operator associated with the self-adjoint operator (4.4) is $(2, 2)$; when $a < 0, \ b < 0$, the deficiency index for the minimal operator associated with the self-adjoint operator (4.4) is $(3, 3)$.

Example 1. If $\beta < \alpha - 2, \ \alpha > 2$, then from Theorem 4.1.1 the deficiency index for the minimal operator associated with the self-adjoint operator (3) is $(2, 2)$ when $a > 0$, and is $(3, 3)$ when $a < 0$. This is the main result of [35].

Example 2. Let $\beta = \alpha - 2, \ \alpha > 2$, and let $b(t) = (\ln t)^\eta, \eta > 1$, then from Theorem 4.1.1 the deficiency index for the minimal operator associated with the self-adjoint operator (4.4) is $(2, 2)$ when $a > 0$, and is $(3, 3)$ when $a < 0$.

Example 3. Let $\beta = \alpha - 2, \ \alpha > 2$, and let $b(t) = (\ln t)^\eta, \eta > 1$, then from Theorem 4.1.2 the deficiency index for the minimal operator associated with the self-adjoint operator (4.4) is $(2, 2)$ when $a > 0, \ b > 0$, and is $(3, 3)$ when $a < 0, \ b < 0$.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.