The Structured Meeting System: A Procedure for Supervising the Completion of Nonrecurring Tasks

Barbara J. Fulton
Western Michigan University

Follow this and additional works at: https://scholarworks.wmich.edu/dissertations
Part of the Industrial and Organizational Psychology Commons

Recommended Citation
https://scholarworks.wmich.edu/dissertations/2644

This Dissertation - Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Dissertations by an authorized administrator of ScholarWorks at WMU. For more information, please contact maira.bundza@wmich.edu.
THE STRUCTURED MEETING SYSTEM: A PROCEDURE FOR
SUPERVISING THE COMPLETION OF NONRECURRING TASKS

by

Barbara J. Fulton

A Dissertation
Submitted to the
Faculty of The Graduate College
in partial fulfillment of the
requirements for the
Degree of Doctor of Philosophy
Department of Psychology

Western Michigan University
Kalamazoo, Michigan
August 1980
ACKNOWLEDGEMENTS

I would like to thank each of my committee members for their help with my dissertation work. Dr. William Burian made useful practical suggestions for my design, and for disseminating the materials to managers. Dr. David Lyon has been a major source of support, especially in funding my position on the department staff, which provided me a setting for research, and gave me a rare opportunity to practice and improve my behavior analytic skills. Dr. Jack Michael has helped me to refine my radical behavior analysis skills, especially the analysis of rule-governed behavior. He has also greatly influenced my teaching techniques, and I respect him as a paragon of teaching excellence. Dr. Richard Malott has been my doctoral advisor, colleague, mentor, and friend throughout my college career. I will always be grateful for his support, encouragement, and the countless opportunities he has provided for me in systems management, educational technology and theoretical analysis and his excellent training of writing techniques. I also gratefully acknowledge Bruce Hesse, whose radical behavioral lifestyle is an excellent model, and whose support and encouragement helped make the final production of this document a pleasant learning experience. I would also like to thank the Psychology Department and University for their financial support and continued commitment to my professional career.

Barbara J. Fulton
INFORMATION TO USERS

This was produced from a copy of a document sent to us for microfilming. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the material submitted.

The following explanation of techniques is provided to help you understand markings or notations which may appear on this reproduction.

1. The sign or “target” for pages apparently lacking from the document photographed is “Missing Page(s)”. If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure you of complete continuity.

2. When an image on the film is obliterated with a round black mark it is an indication that the film inspector noticed either blurred copy because of movement during exposure, or duplicate copy. Unless we meant to delete copyrighted materials that should not have been filmed, you will find a good image of the page in the adjacent frame.

3. When a map, drawing or chart, etc., is part of the material being photographed the photographer has followed a definite method in “sectioning” the material. It is customary to begin filming at the upper left hand corner of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again—beginning below the first row and continuing on until complete.

4. For any illustrations that cannot be reproduced satisfactorily by xerography, photographic prints can be purchased at additional cost and tipped into your xerographic copy. Requests can be made to our Dissertations Customer Services Department.

5. Some pages in any document may have indistinct print. In all cases we have filmed the best available copy.

University Microfilms International

300 N. ZEEB ROAD, ANN ARBOR, MI 48106
18 BEDFORD ROW, LONDON WC1R 4EJ, ENGLAND

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. ii

LIST OF TABLES AND FIGURES .. iv

Chapter

I INTRODUCTION .. 1

II METHOD ... 4

Subjects and Setting .. 4

Task definition .. 5

Baseline .. 6

Structured meeting system .. 7

Dependent variables .. 8

Reliability .. 11

III RESULTS ... 13

IV DISCUSSION .. 30

REFERENCES .. 35

APPENDIX ... 36

BIBLIOGRAPHY .. 38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
LIST OF TABLES AND FIGURES

Table I. Percent of tasks completed overall by individual subjects in baseline and intervention ... 15
Table II. Percent of tasks completed rapidly (i.e., within one week) by individual subjects in baseline and intervention 17
Table III. Mean rapid task completion percentages by individual subjects in baseline and intervention, as a function of the importance rating of the task .. 27
Table IV. Mean overall task completion percentages by individual subjects in baseline and intervention, as a function of the importance rating of the task .. 29

Figure 1. The nonrecurring task form ... 10
Figure 2. Cumulative rate of task assignment (closed circles) and task completion (open triangles) as a function of weeks. The task assignment curve reflects the behavior of the supervisor and the task completion curve reflects the behavior of the supervisee (subject) .. 19
Figure 3. Mean relative frequency of task completion as a function of the task age. Task age refers to the number of weeks which elapsed since the supervisor assigned the task. The solid line is the baseline curve and the dotted line is the intervention curve .. 21
Figure 4. Mean proportion of tasks completed per opportunity as a function of task age. The solid line is the baseline curve and the dotted line is the intervention curve .. 24
CHAPTER I

INTRODUCTION

Managers hold the responsibility of insuring the completion of delegated tasks - a critical function. Yet, many of them find this to be a problem area, according to the reports of managers during several personal contacts. They note that employees do not always complete all assigned tasks, and those tasks which they do complete are often not finished as soon as managers had expected. Byham (1977a & 1977b) underscores this problem by noting that managers often have ineffective supervisory skills because their own managers did not have effective managing skills. Furthermore, effective managing skills do not merely develop from continued practice (although the practice probably results in managers finding a routine way to supervise).

Efficient and effective supervising might be better arranged on the basis of an analysis of the contingencies for managers' and supervisors' behavior. Procedures for managing the completion of tasks should encompass the behaviors of both manager and supervisee, because successful delegation involves the manager's assigning a task, the supervisee's performing the task, and the manager's monitoring the task completion.

Delegated tasks fall into two broad categories: recurring tasks and nonrecurring tasks. Recurring tasks are those which workers perform repeatedly, such as ringing up a sale or doing a routine task.
on an assembly line. In contrast, nonrecurring tasks are those which workers perform only once, such as writing a report or designing a piece of equipment. With recurring tasks, the manager can delegate the task once and then the worker performs it again and again. Non-recurring tasks are different each time, so they demand more of a manager's time and effort in assigning each one. For example, a manager might assign each of several different tasks: completing a report of a project, reading information about new procedural standards, and implementing changes in procedures. Sometimes one delegation actually involves many nonrecurring tasks, as in cases of managers assigning a major responsibility (e.g., "upgrade our company procedures to meet new standards"). Even so, when the task is finished (e.g., standards met) the manager again delegates new tasks.

Both recurring and nonrecurring tasks occur in all organizations, but the existing literature addresses recurring tasks almost exclusively. Common procedures involve counting occurrences of behavior, such as the number of sales (Miller, 1977), machine operations (McCarthy, 1978), therapy sessions conducted (Pommer & Streedbeck, 1974; Kreitner, Reif & Morris, 1977; Panyon, Boozer & Morris, 1970), cash shortages (Marhelin & Gray, 1976), or prompt arrivals at work (Hermann, deMontes, Domingues, Montes & Hopkins, 1973; Kent, Malott & Greening, 1977). Some investigators have shown improvements by providing data to workers on their own performance (e.g., Lamal & Benfield, 1978), while others have added extra consequences, such as tokens (Kent et al., 1977).
A feedback procedure might be desirable to use with nonrecurring tasks, but they differ from recurring tasks in ways that are relevant to such procedures. First, gathering data on completed tasks requires the manager to monitor all tasks on a regular basis. Secondly, managers should make regular contact with supervisees to provide systematic feedback, because, as Byham (1977a) notes, the manager is an important source of control for supervisees' behavior. However, the monitoring is difficult, because, unlike recurring tasks, nonrecurring tasks do not happen at the same time or in the same place. It is most likely that managers locate supervisees (e.g., by phone or in the office), assign a task, and assume it will be completed. If managers follow up at all, it probably occurs when the manager happens to see the supervisee under conditions related to the task. But, in most cases, that follow-up does not seem to occur. The organizational setting contains many distractions, which effectively compete with the manager's systematic monitoring of their supervisees. Therefore, it would be desirable to develop procedures for supervising nonrecurring tasks.

The present study investigated the effects of a structured meeting system for monitoring and consequating nonrecurring tasks—a system that parallels those that have been used to monitor and consequate recurring tasks. The proposed system incorporated weekly meetings, which provided an occasion for assigning new tasks, as well as monitoring previous ones. In addition, it utilized a standardized task form, which allowed for a weekly record of performance, and insured deadlines for all assigned tasks.
CHAPTER II

METHOD

Subjects and Setting

Four undergraduate junior and senior middle managers participated in this study, which took place in a large introductory psychology program, administered by a four-tiered staff hierarchy of 50 undergraduate and graduate students. The program was part of the Psychology Department at a midwestern state university where one female Ph.D. candidate worked on the department staff as the instructor for the introductory courses, and as the supervisor for the program's staff members. The supervisor was the experimenter for the current study.

Most middle managers held their positions for only one or two years before they graduated, so there was a high turnover rate. The two male and two female subjects were working in their first year as middle managers, and the supervisor/experimenter selected them as subjects on that basis, so they were uncontaminated by previous interventions for pilot research. All four subjects signed informed consent forms to participate in the research (see Appendix A).

The subjects spent an average of 75% of their work hours engaged in recurring tasks, with the remainder of their hours available for non-recurring tasks, assigned by the supervisor/experimenter. Two subjects worked 10 hours per week, and two worked 12 hours per week,
so the time available for nonrecurring tasks was about three hours per week.

The setting employed six other paid middle managers, in addition to the subjects, and each of them supervised and evaluated the activities of teaching apprentices, working for course credit. (The apprentices comprise the line staff, carrying out instructional activities in the classroom.) Middle managers also completed various other recurring tasks, such as office management (e.g., filing and record-keeping activities), audio-visual duties (e.g., showing slide shows and movies), data-gathering activities (e.g., performance reports of student progress), and data processing (e.g., computer operation). Each middle manager received a job manual, specifying the common requirements of all middle managers, and several duties for his or her position in particular.

The middle managers worked different shifts in a complex of four offices, located adjacent to the classrooms in which apprentices held classes with students.

Task definition

Many tasks required of middle management do not involve supervision of staff, but are carried out by managers directly. These were the kinds of tasks studied here. All assigned tasks represented nonrecurring tasks, which took from several minutes to several hours to complete. However, the majority of these tasks required one hour or less. The supervisor assumed that middle managers would complete all assigned tasks themselves, though it was possible to delegate some
of them. The reason for selecting only non-delegated tasks for the study was because the contingencies during intervention would be related directly to only the subjects' behavior. Thus, it was desirable to eliminate the additional variable of productivity and timeliness of the person to whom tasks might be delegated.

Examples of the assigned tasks were: collecting item analyses for difficult quizzes, writing an evaluation form for students to rate new reading materials, repairing a piece of audio-visual equipment, writing a report on the adequacy of meeting a particular systems objective, or preparing a graph for apprentices to record computer errors.

Baseline

During baseline, the supervisor/experimenter assigned tasks to individual subjects at weekly group staff meetings or in the office. The supervisor recorded the assigned tasks, either immediately before or after the assignment, but never in the presence of the subjects. The supervisor never asked the subjects about their completion of tasks, although there was a covert weekly check to see if the tasks had been completed.

The supervisor stated at the beginning of the study that all staff members were responsible for completing any duties assigned to them, and that performance on such tasks was considered in the overall evaluation of a staff member; staff typically requested a letter of recommendation within one year of their graduation. However, there was no known systematic evaluation, such as a precise record of
performance.

It was possible that the subjects would talk to the supervisor about baseline tasks, even though the supervisor did not explicitly monitor their completion. In the few cases where the subjects did report a completed task, the supervisor said, "That's good, thank you", and then began talking about the current task to be assigned. Subjects never reported non-completion of any tasks during baseline.

Structured meeting system

The independent variable was a structured meeting system, consisting of four different components: task assignment forms, deadline assignment, deadline monitoring, and weekly meetings. Each component will be defined below. For three of the subjects, all four components occurred together, following the baseline phase. One subject was already meeting weekly with the supervisor when the study began, so the baseline phase included weekly meetings, with the other three components added simultaneously upon intervention. The supervisor used the system with one subject at a time, according to a multiple-baseline design.

Meetings. When meetings were in effect, the subjects attended a weekly individual meeting for one-half hour with the supervisor/experimenter. The agenda first covered tasks which the supervisor had assigned previously, and which were due that week. Then, new tasks were discussed and assigned. The supervisor never discussed baseline tasks. If subjects mentioned them, the supervisor handled them in the same way as described for baseline.
Task assignment forms. At the first weekly meeting, the supervisor gave each subject a standardized form (called a nonrecurring task form). A copy of the form appears in Figure 1. The supervisor stated that the forms would be used for keeping track of assigned tasks, and instructed the subjects to bring the form to each meeting. Both the supervisor and the subjects had identical forms, and wrote down each assigned task on his or her own copy.

Deadlines. The supervisor specified a deadline for each task assigned during intervention. The structure of the nonrecurring task form insured this, because the date due appeared next to each block of tasks. Thus, writing a task in any block automatically assigned a deadline to it. For the purposes of the study, all deadlines were the date of the next weekly meeting. Tasks which were likely to take longer were broken down into weekly units.

Deadline monitoring. At each weekly meeting, the supervisor requested a report about each task due. The subjects gave verbal reports and showed permanent products whenever appropriate. The supervisor wrote a code for each task in the "Action Taken" column of the nonrecurring task form, using "C" for completed tasks, "NC" for tasks not completed and no longer possible or relevant, and "R" for recycled tasks, which were those not completed, but still possible to complete. The supervisor assigned new due dates for recycled tasks.

Dependent variables

Both productivity and timeliness were studied, with productivity
Figure 1. The Nonrecurring Task Form.
FIGURE 1

Meeting Agenda Format
Nonrecurring Tasks

<table>
<thead>
<tr>
<th>Due Date/Week</th>
<th>Tasks</th>
<th>New Due Date</th>
<th>Action Taken</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
defined as the percentage of tasks completed overall, and timeliness
defined as the percentage of tasks completed at various task ages
(i.e., the number of weeks since the supervisor assigned the task).
"Rapid" completion referred to the completion of tasks within the first
week since being assigned.

The supervisor expected rapid completion of all tasks, which she
stated vocally at the start of the study. The criteria for "com­
pleted" tasks typically occurred in the statement of a task assign­
ment, and took the form of a request for a permanent product. Some­
times the permanent product resulted automatically from completing a
task, such as a written summary of data or an evaluation. In other
cases, it did not, such as making a phone contact or meeting with a
staff member; under these circumstances, the supervisor requested that
subjects write a note or report regarding the outcome of the task.

Reliability

The supervisor/experimenter collected data as the primary observ­
er for the study. A graduate assistant served as the secondary ob­
server for accuracy of 1) the delivery of the independent variable
(task assignment), 2) the occurrence of the dependent variable (task
completion), and 3) the importance of the task to the setting. For
the first measure, the observer accompanied the supervisor when she
assigned tasks in baseline. The observer stood nearby (but out of
sight) and listened to the assignment, recording the task description
and whether or not the supervisor assigned a deadline. For the subject
with meetings during baseline, the observer listened to a tape of the
meeting, recording the same information. Reliability during intervention resulted from a post-hoc comparison of the supervisor's non-recurring task form and the subjects' task forms. Calculations for delivery of the independent variable yielded 94% agreement overall \[\frac{\# \text{ of agreements}}{\# \text{ of agreements} + \# \text{ of disagreements}} \times 100\].

Accuracy of the dependent variable measurement resulted from independent checks by the secondary observer of approximately 40% of all assigned tasks. The observer checked the location specified for the permanent product and recorded whether or not it was there. Inter-observer agreement for the dependent variable was 100%.

The supervisor and observer also rated the importance of each task assigned, on a one to three scale, where a rating of one indicated the greatest importance, and a rating of three indicated least importance. The reliability observer received a definition of the ratings and a training example of a task at each rating. Rating decisions required observers to consider the consequences likely to result in the setting if the task was not completed. Inter-observer agreement on importance ratings was 85%.
CHAPTER III
RESULTS

For all four subjects, the structured meeting system improved both productivity of work (i.e., total percent of tasks completed) and timeliness of work (i.e., percent of tasks completed rapidly, or within one week). Productivity improved by an average of 46% and timeliness by an average of 52% (see Tables I and II).

The results for individual subjects appear in Figure 2, which shows the cumulative number of tasks assigned by the supervisor and the cumulative number of tasks completed by the subjects. In all cases, the distance between the two curves narrowed during intervention, indicating an improvement. For two subjects (S1 and S2), the task completion curve exceeded the task assignment curve. This occurred because they both completed some tasks at the start of intervention that had been assigned at the end of baseline in addition to completing all intervention tasks assigned that week.

In baseline, there was an inverse relation between task age (i.e., number of weeks since assignment) and task completion, shown in the relative frequency curve in Figure 3. Subjects completed an average of 11% of the tasks that were one week old, and progressively lower percentages for successive weeks of age; they completed no remaining tasks after three weeks of age.

The same inverse relation occurred during intervention, though the overall percentages of task completion were higher. Subjects
Table I. Percent of tasks completed overall by individual subjects in baseline and intervention.
TABLE I

PERCENT OF TASKS COMPLETED OVERALL BY INDIVIDUAL SUBJECTS IN BASELINE AND INTERVENTION

<table>
<thead>
<tr>
<th>Subject</th>
<th>Baseline</th>
<th>Number of Tasks Assigned</th>
<th>Intervention</th>
<th>Number of Tasks Assigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>63%</td>
<td>19</td>
<td>96%</td>
<td>26</td>
</tr>
<tr>
<td>2</td>
<td>79%</td>
<td>28</td>
<td>100%</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>35%</td>
<td>24</td>
<td>100%</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>25%</td>
<td>30</td>
<td>90%</td>
<td>10</td>
</tr>
<tr>
<td>Average</td>
<td>50.5%</td>
<td></td>
<td>96.5%</td>
<td></td>
</tr>
</tbody>
</table>
Table II. Percent of tasks completed rapidly (i.e., within one week) by individual subjects in baseline and intervention.
TABLE II

PERCENT OF TASKS COMPLETED RAPIDLY (I.E., WITHIN ONE WEEK) BY INDIVIDUAL SUBJECTS IN BASELINE AND INTERVENTION

<table>
<thead>
<tr>
<th>Subject</th>
<th>Baseline</th>
<th>Number of Tasks Assigned</th>
<th>Intervention</th>
<th>Number of Tasks Assigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>42%</td>
<td>19</td>
<td>81%</td>
<td>26</td>
</tr>
<tr>
<td>2</td>
<td>43%</td>
<td>28</td>
<td>100%</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>22%</td>
<td>24</td>
<td>89%</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>22%</td>
<td>30</td>
<td>70%</td>
<td>10</td>
</tr>
<tr>
<td>Average</td>
<td>32%</td>
<td></td>
<td>84%</td>
<td></td>
</tr>
</tbody>
</table>
Figure 2. Cumulative rate of task assignment (closed circles) and task completion (open triangles) as a function of weeks. The task assignment curve reflects the behavior of the supervisor and the task completion curve reflects the behavior of the supervisees (subjects).
Figure 3. Mean relative frequency of task completion as a function of the task age. Task age refers to the number of weeks which elapsed since the supervisor assigned the task. The solid line is the baseline curve and the dotted line is the intervention curve.
spent different lengths of time in intervention, with the shortest
time being two weeks; thus relative frequency was compared only for
the first two weeks of intervention data for each subject. The mean
relative frequency increased to 83.4% for the tasks one week old, a
60% improvement over baseline.

It may be useful to consider the proportion of tasks completed
per opportunity, which differs from relative frequency in that it
considers only the uncompleted tasks at each age. That is, with
relative frequency, the number of tasks completed at each age was
based on the total number of assigned tasks for the entire phase
(or, in the case of intervention, the total for the first two weeks).
In contrast, the proportion of tasks per opportunity measures how many
tasks the subjects completed at each age, based on the number of tasks
still uncompleted (i.e., by subtracting all those completed at pre-
vious ages). The proportion of tasks completed per opportunity showed
a decreasing trend as a function of task age, and there was substantial
improvement at all ages during the intervention (see Figure 4). Thus,
in both phases, the subjects were most likely to complete tasks within
the first week of opportunity, and less likely to do so as the task
age increased. However, during intervention, the proportion of tasks
completed per opportunity at all ages was more than twice what it had
been in baseline.

Task importance might be expected to influence whether or not
a particular task was finished, with important tasks being completed
most rapidly. In fact, baseline data did reveal such an influence on
timeliness, showing a positive relation between task importance and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Figure 4. Mean proportion of tasks completed per opportunity as a function of task age. The solid line is the baseline curve and the dotted line is the intervention curve.
FIGURE 4

MEAN PROPORTION COMPLETED PER OPPORTUNITY

TASK AGE IN WEEKS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
the percent completed rapidly (see Table III). However, even the most important ones averaged only 38% rapid completion. During intervention, tasks at all importance levels were more likely to be completed rapidly than even the most important tasks during baseline. The positive relation between importance and completion was no longer evident for rapid completion in this phase.

In both baseline and intervention there was a positive relationship between importance rating and overall completion, or productivity, with the most important tasks being most likely to be completed (see Table IV). As with the timeliness measure, total completion percentages increased for all three importance levels between baseline and intervention. All three importance ratings reflected overall completions percentages of at least 90% during the intervention.
Table III. Mean rapid task completion percentages by individual subjects in baseline and intervention, as a function of the importance rating of the task.
TABLE III

MEAN RAPID TASK COMPLETION PERCENTAGES BY INDIVIDUAL SUBJECTS IN BASELINE AND INTERVENTION, AS A FUNCTION OF THE IMPORTANCE RATING OF THE TASK

<table>
<thead>
<tr>
<th>Importance Rating</th>
<th>Baseline</th>
<th>Number of Tasks Assigned</th>
<th>Intervention</th>
<th>Number of Tasks Assigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>38%</td>
<td>44</td>
<td>77%</td>
<td>28</td>
</tr>
<tr>
<td>2</td>
<td>30.5%</td>
<td>52</td>
<td>90%</td>
<td>35</td>
</tr>
<tr>
<td>3</td>
<td>19%</td>
<td>13</td>
<td>90%</td>
<td>6</td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Table IV. Mean overall task completion percentages by individual subjects in baseline and intervention, as a function of the importance rating of the task.
TABLE IV

MEAN OVERALL TASK COMPLETION PERCENTAGES BY INDIVIDUAL SUBJECTS IN BASELINE AND INTERVENTION, AS A FUNCTION OF THE IMPORTANCE RATING OF THE TASK

<table>
<thead>
<tr>
<th>Importance Rating</th>
<th>Baseline</th>
<th>Number of Tasks Assigned</th>
<th>Intervention</th>
<th>Number of Tasks Assigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>64.5%</td>
<td>44</td>
<td>100%</td>
<td>28</td>
</tr>
<tr>
<td>2</td>
<td>48%</td>
<td>52</td>
<td>94%</td>
<td>35</td>
</tr>
<tr>
<td>3</td>
<td>19%</td>
<td>13</td>
<td>90%</td>
<td>6</td>
</tr>
</tbody>
</table>
CHAPTER IV
DISCUSSION

The structured meeting system improved performance markedly for all subjects, regardless of the frequency of task assignment or the importance of tasks, within the parameters of this study. It was not possible to assess the separate effects of the four different features of the structured meeting system in this study. However, the purpose was to investigate their combined effects - the way managers would actually use them - because the features seem functionally related to one another. Managers should keep some record of work assigned, which the nonrecurring task form provides. But the structured meeting system is more systematic than many record-keeping methods, because it attempts to integrate the essential features. That is, it sets the occasion for deadline assignment and monitoring: deadline assignment coincides with writing a task on the form, and deadline monitoring is more likely as a result of the weekly meetings.

The need for task management procedures is evident from analyses of the typical contingencies in a work setting, where the assigned tasks enter into several contingencies. One type of contingency controls behavior leading to task completion, and workers may extract rules such as "If I do not complete this task, I will not get a raise" or "If I do this task, I will be rated higher in my performance appraisal". However, there are also contingencies which control behavior competing with task completion, exemplified by rules such as
"The manager rarely checks to see if I did the task" or "The manager is always satisfied when I merely say 'I'm working on it'". Both types of contingencies operate concurrently, and the behavior of workers should change as a function of changes in the contingencies. That is, if workers are not completing enough tasks, one could make the consequences more desirable for their completion, or make the consequences more aversive for competing behaviors.

In the present study, performance improved, but not as a result of adding new consequences (e.g., bonuses or points) but as a result of making the existing consequences of manager approval or disapproval contingent on the task-related behavior of the supervisees. Weekly meetings decreased the amount of control by contingencies governing behaviors which competed with completing tasks, by making manager disapproval more likely for unfinished tasks. It also improved the control by contingencies governing task completion, by making manager approval more likely for completed tasks.

Managers might wish to use the nonrecurring task form without meetings (Torrey, 1979). However, this eliminates both meetings and deadline-monitoring features and thus it probably decreases the likelihood of managers' monitoring task completion. This problem is worthy of note, because a common source of resistance to the system is likely to be that managers do not have the time for all the meetings. However, managers who report no time for meetings are not likely to spend the time monitoring tasks. Even if they did, monitoring outside of meeting settings would require managers to find supervisees to assign and monitor each task, which is likely to take more time.
than if supervisees reported to managers at a set time each week. This was found to be true in the present study, where the manager spent only two hours a week (½ hour per subject) delegating tasks during intervention; during baseline, the estimated time was at least four hours a week. Furthermore, anecdotal information supports the prediction that regular monitoring does not occur without meetings; in the present study, weekly monitoring was necessary to collect baseline data, but no meetings occurred. This was so difficult to maintain that the supervisor/experimenter implemented a self-management project to keep other activities from competing successfully with task monitoring. (The self-management project was not necessary during intervention.)

One might argue that the poor performance during baseline suggests that the subjects were not representative of middle managers in organizations, who hold their positions because they have demonstrated competence, and can therefore be expected to complete tasks without such explicit monitoring. However, the subjects were responsible people - selected for their competence at lower staff levels and they seemed to be "highly motivated". They worked in a setting related to their field of study, and often worked there partly for experience, and for recommendations for graduate school or other jobs. Furthermore, even in baseline, they were rated highly by the manager. They usually appeared to be busy while they were at work and did quality work. It was only upon systematic recording that it became evident that they were performing poorly on assigned nonrecurring tasks.

Having agreed that the current subjects are highly motivated, one
might suggest that these results are therefore not generalizable to work populations of marginal performers, very different from college-level populations. Perhaps the same results would not occur with such populations. However, the proposed system might improve performance somewhat, because of the increased contact of managers and supervisees. And the system provides opportunities for simple modifications, if desired effects do not occur. For example, managers could add extra consequences (e.g., points, related to reinforcers or punishers) and could record these on the nonrecurring task form (e.g., in the Action Taken column). Another modification is changing the frequency of meetings when performance is below desired criteria. Improvements might occur if managers met with supervisees at shorter intervals (e.g., twice a week), because this alters the frequency of deadlines and may improve time management by supervisees.

The proposed system should be adaptable to all levels within a staff hierarchy, as well as being useful with tasks which managers assign to supervisees, who then delegate parts of them to their supervisees. The optimal system is probably one in which top-level managers use the meeting system with their immediate supervisees, who would use a similar system with their supervisees, and so on. Managers thus provide models of effective supervisory skills, which was mentioned earlier as an important source of control for supervisees in their own management of others.

In summary, the structured meeting system is a systematic method for managing nonrecurring task performance at all levels in an organization. Several aspects of the system would be of interest for
further validation of its effectiveness. Follow-up research could focus on the behavior of the manager to substantiate the claim that this system reduces time and effort for managers. For example, one might measure how time and effort change for assigning and monitoring tasks, whether or not more tasks actually get delegated (or get delegated earlier) with the meetings and forms, and whether or not additional contingencies are needed to keep managers using the system.

Additional follow-up research might investigate whether or not other aspects of supervisee behavior are affected indirectly when non-recurring task performance improves. It might be that performance of other tasks (e.g., recurring tasks) is disrupted when employees put more effort into assigned tasks. These concurrent behaviors were not recorded in the present study, so further research is necessary to answer the question.

This research extended contingency-management procedures to areas that previous research has not addressed — to the behavior of higher-level managers and to nonrecurring task performance. Organizations involve complex combinations of worker repertoires at many hierarchical levels, and changes at one level are likely to affect others as well. That is, changing the contingencies for supervisees may indirectly change the contingencies of their supervisors. Therefore, the overall outcome measures in organizations may improve as a result of researchers' efforts to include all hierarchical levels in their interventions. Furthermore, this may result in better maintenance of the procedures, which might otherwise not happen.
REFERENCES

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
APPENDIX A

CONSENT FORM

This form is for your permission for me to collect data for a research project being conducted this semester. The research is in the area of staff management and is concerned specifically with staff meetings. With your permission, I will collect data from the tapes of meetings, both the individual and the large staff weekly meetings. I will also collect data on my supervision of assistants outside the meetings concerning your weekly duties. There is no risk to you as a participant; you will not be consequated in any way other than you are now. My main focus will be on the way in which I run the meetings, and whether or not different managerial methods will have different effects on various staff behaviors.

I hope to present the data in my doctoral dissertation, and at conventions. In the event that I do use the data in this way, it will be presented in such a way that no individual can be identified from it. During the course of the study, the raw data will be kept confidential, so no one but the experimenter will have access to it.

You may withdraw from the study at any time, by putting a request in writing to me.

Signature ____________________

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
BIBLIOGRAPHY

