The goal is to record most books written or edited by the Department of Mathematics faculty. We will start by entering the most recent publications first and work our way back to older books. There is a WMU Authors section in Waldo Library, where most of these books can be found.
With a few exceptions, we do not have the rights to put the full text of the book online, so there will be a link to a place where you can purchase the book.
If you are a faculty member and have a book you would like to include in the WMU book list, please contact wmu-scholarworks@wmich.edu/
-
Techniques of Variational Analysis
Jonathan M. Borwein and Qiji Zhu
Variational arguments are classical techniques whose use can be traced back to the early development of calculus of variations and further. Rooted in the physical principle of least action they have wide applications in diverse fields. This book provides a concise account of the essential tools of infinite dimensional first-order variational analysis illustrated by applications in many areas of analysis, optimization and approximation, dynamical systems, mathematical economy and elsewhere. The book is aimed at both graduate students in the field of variational analysis and researchers who use variational techniques or think they might like to. Large numbers of guided exercises are provided that either give useful generalizations of the main text or illustrate significant relationships with other results.
-
Contemporary Mathematics in Context: A Unified Approach, Course 1, Part A, Student Edition
Arthur F. Coxford, James T. Fey, Christian R. Hirsch, Harold L. Schoen, Gail Burrill, Eric W. Hart, Ann E. Watkins, Beth Ritsema, and Mary Jo Messenger
Contemporary Mathematics in Context engages students in investigation-based, multi-day lessons organized around big ideas. Important mathematical concepts are developed in relevant contexts by students in ways that make sense to them. Courses 1, along with Courses 2 and 3, comprise a core curriculum that upgrades the mathematics experience for all your students. Course 4 is designed for all college-bound students. Developed with funding from the National Science Foundation, each course is the product of a four-year research, development, and evaluation process involving thousands of students in schools across the country.
-
Graphs of Groups on Surfaces: Interactions and Models
Arthur T. White
The book, suitable as both an introductory reference and as a text book in the rapidly growing field of topological graph theory, models both maps (as in map-coloring problems) and groups by means of graph imbeddings on surfaces. Automorphism groups of both graphs and maps are studied. In addition connections are made to other areas of mathematics, such as hypergraphs, block designs, finite geometries, and finite fields. There are chapters on the emerging subfields of enumerative topological graph theory and random topological graph theory, as well as a chapter on the composition of English church-bell music. The latter is facilitated by imbedding the right graph of the right group on an appropriate surface, with suitable symmetries. Throughout the emphasis is on Cayley maps: imbeddings of Cayley graphs for finite groups as (possibly branched) covering projections of surface imbeddings of loop graphs with one vertex. This is not as restrictive as it might sound; many developments in topological graph theory involve such imbeddings. The approach aims to make all this interconnected material readily accessible to a beginning graduate (or an advanced undergraduate) student, while at the same time providing the research mathematician with a useful reference book in topological graph theory. The focus will be on beautiful connections, both elementary and deep, within mathematics that can best be described by the intuitively pleasing device of imbedding graphs of groups on surfaces.
-
Basic Theory of Ordinary Differential Equations
Po-Fang Hsieh and Yasutaka Sibuya
Providing readers with the very basic knowledge necessary to begin research on differential equations with professional ability, the selection of topics here covers the methods and results that are applicable in a variety of different fields. The book is divided into four parts. The first covers fundamental existence, uniqueness, smoothness with respect to data, and nonuniqueness. The second part describes the basic results concerning linear differential equations, while the third deals with nonlinear equations. In the last part the authors write about the basic results concerning power series solutions. Each chapter begins with a brief discussion of its contents and history, and hints and comments for many problems are given throughout. With 114 illustrations and 206 exercises, the book is suitable for a one-year graduate course, as well as a reference book for research mathematicians.