Date of Award
4-2013
Degree Name
Doctor of Philosophy
Department
Chemistry
First Advisor
Dr. Gellert Mezei
Second Advisor
Dr. Ekkehard Sinn
Third Advisor
Dr. Guda Ramakrishna
Fourth Advisor
Dr. Daniel Kujawski
Keywords
Pseudorotaxanes, metal-organic rotaxanes, coordination chemistry, rotaxanes, self-assembly, molecularly woven materials
Abstract
The focus of this work is on mechanically interlocked molecules (MIMs), which have unusual physicochemical and mechanical properties with potential applications in nano-scale/molecular devices and high strength materials.
Rotaxanes, for example, consist of an axle-like molecule threaded through a wheel-like molecule, with bulky groups at the two ends of the axle preventing the wheel from dissociating. The position of the wheel along the axle can be switched in a controllable and reversible manner by applying external stimuli, a feature that might lead to the next generation of computers. Molecularly woven materials (MWMs), another example of molecules with mechanically interlocked features, are predicted to be unprecedentedly strong while being lightweight and flexible.
With the ultimate goal of achieving control over the functioning of molecular devices in the solid state, a variety of pseudorotaxane building blocks were prepared and characterized, including a novel, rare blue-colored motif. The temperature-dependent assembly/disassembly of pseudorotaxanes was exploited for the construction of single-wavelength colorimetric temperature sensors over a 100 °C window. Pseudorotaxanes based on aromatic crown ether wheels and disubstituted 4,4'-bipyridinium axles were converted into rotaxanes upon binding to metal complexes (zinc, cadmium, mercury, copper, cobalt), and the formation of ordered crystalline arrays was studied in the solid state. The columnar organization of pseudorotaxanes by Hg2X62– complexes (X = Cl, Br, I), leading to unprecedented dichroic (blue/red) rotaxane crystals, was demonstrated for the first time. From the crystal structures studied it became apparent that negatively charged metal complexes are needed for successful assembly with the positively charged pseudorotaxane units. To be able to use the more common, positively charged metal ions for rotaxane framework construction, neutral and negatively charged pseudorotaxanes were synthesized, by attaching anionic substituents (carboxylates, sulfonates) to either the wheel or the axle component. It was found that pseudorotaxane formation also enabled resolution of two sulfonated crown ether isomers, which were inseparable by conventional methods.
Organic ligands for MWM precursors were designed and synthesized according to multi-step schemes. Helical metal-complexes based on these ligands were prepared and characterized.
Chromatography, Nuclear Magnetic Resonance and UV-Visible spectroscopy, Mass spectrometry, Electrochemistry, Thermogravimetric Analysis and X-ray crystallography were used in identification, purification and characterization of the compounds involved.
Access Setting
Dissertation-Open Access
Recommended Citation
Fernando, Isurika Rosini, "Metal-Organic and Supramolecular Architectures Based on Mechanically Interlocked Molecules" (2013). Dissertations. 140.
https://scholarworks.wmich.edu/dissertations/140