Date of Award

6-1998

Degree Name

Doctor of Philosophy

Department

Mathematics

First Advisor

Dr. Joseph Buckley

Second Advisor

Dr. John Martino

Third Advisor

Dr. Thomas Richardson

Fourth Advisor

Dr. Kung Wei Yang

Abstract

Given a finite group G and the ring of integers, one can form the integral group ring ZG . A natural problem to investigate is to find a description of the group of units for this ring ZG. Since the unit problem for integral group rings arises in the contexts of algebraic topology, number theory, and algebra, it is an important question to try to answer. For this reason, it has drawn the attention of researchers from diverse areas of mathematics.

Graham Higman (circa 1940) made substantial contributions to the solution of this problem, in the case where G was a finite abelian group. From then on. the main focus of the research in this area has been in the case where G was a finite non-abelian group. Although there are some results for U(ZG) for various groups G, very little is known with respect to explicit descriptions of U(ZG ).

In this dissertation, we address the following question: If we have a description of U(ZG), what information can we obtain about U(ZG*), where G' = G x Cp and p is prime? A general algebraic framework using short-exact sequences is developed to study this problem. In addition, known and new results are obtained in the case where p = 2.

Comments

Fifth Advisor: Dr. Michael Parmenter

Access Setting

Dissertation-Open Access

Included in

Mathematics Commons

Share

COinS