Date of Award
6-2020
Degree Name
Doctor of Philosophy
Department
Mechanical and Aerospace Engineering
First Advisor
Dr. Claudia Fajardo-Hansford
Second Advisor
Dr. Parviz Merati
Third Advisor
Dr. Tianshu Liu
Fourth Advisor
Dr. Javier Montefort
Keywords
Internal combustion engines, turbulence, anisotroov, tensor invariant analysis
Abstract
Turbulence significantly impacts the operation of energy conversion devices. In internal combustion (IC) engines, mixing, heat transfer, and combustion are all strongly dependent on the turbulence inside the cylinder. Consequently, knowledge of the state of turbulence is critical for improving our understanding and modeling of engine processes.
Turbulence states may be determined through analysis of the Reynolds stress tensor, which can in turn be experimentally quantified using velocity data. In this research, stereoscopic particle image velocimetry (stereo-PIV) experiments were conducted in a single-cylinder, motored engine with optical access to measure the two-dimensional, three-component (2D-3C) velocity fields throughout the compression stroke. Invariants of the Reynolds stress anisotropy tensor were calculated and visualized, using the Lumley triangle, at various piston positions.
Results showed the turbulence to be mostly anisotropic throughout the compression stroke, in contrast to commonly employed modeling assumptions. Despite some spatial dependence of turbulent states, the turbulence was preferentially two-dimensional and axisymmetric at the beginning of the compression stroke, showing a tendency toward isotropy as the piston approached top-dead-center. Findings provide new insights into turbulence in dynamic, bounded flows to assist with the development of physics-based, quantitative models.
Access Setting
Dissertation-Open Access
Recommended Citation
MacDonald, James R., "Turbulence Investigations in the Core-Flow of an Internal Combustion Engine" (2020). Dissertations. 3569.
https://scholarworks.wmich.edu/dissertations/3569
Comments
Fifth Advisor: Dr. Callum Gray