Date of Award
8-2017
Degree Name
Master of Science in Engineering
Department
Mechanical and Aerospace Engineering
First Advisor
Dr. Kapseong Ro
Second Advisor
Dr. Jennifer Hudson
Third Advisor
Dr. Jun-Seok Oh
Keywords
Bicycle, bicycle dynamics, IPB, dynamic simulation, bicycle transportation
Access Setting
Masters Thesis-Open Access
Abstract
Bicycles have been used as a form of non-motorized transportation for several hundred years. Recently, their use in the transportation realm has been reinvigorated because of growing population densities and efforts to improve environmental sustainability. However, a large deterrent for public use of the bicycle is concern over its level of safety in the transportation environment. The goal of this thesis is to develop two complementary research tools that advance the study of bicycle safety factors.
First, an instrumented probe bicycle (IPB) is constructed from the ground up. The bicycle is outfitted with an array of sensors that are integrated into a unified instrumentation system. The design presented herein describes the components and capabilities of this IPB, as well as its limitation. Since the study of transportation safety often requires the identification of high-risk areas, it is necessary to classify data by geographic location. A geographic segmenting algorithm is formulated to complement the IPB system. Both the instrumented bicycle and the algorithm are evaluated from pilot testing and found to perform satisfactorily.
Second, a computation dynamic model is developed to analyze bicycle motion. Despite being a simple system, the bicycle has relatively complex dynamics. Understanding these dynamics is useful in assessing situational rider safety. To generate the model, differential equations of motion are derived from first principles. These equations are developed into a computer program for numerical integration. Model validation is preformed against previous work and found to be accurate.
Recommended Citation
Kostich, Brent, "Development of Empirical and Virtual Tools for the Study of Bicycle Safety" (2017). Masters Theses. 1513.
https://scholarworks.wmich.edu/masters_theses/1513