Date of Award
12-2018
Degree Name
Master of Science in Engineering
Department
Civil and Construction Engineering
First Advisor
Dr. Xiaoyun Shao
Second Advisor
Dr. Upul Attanayake
Third Advisor
Dr. Houssam Toutanji
Keywords
Real-time, distributed hybird simulation, delay compensation, floating wind turbine, experimental testing
Access Setting
Masters Thesis-Open Access
Abstract
Real-time hybrid simulation (RTHS), which integrates physical experiment and numerical simulation, plays an essential role in understanding the time-dependent behavior of structures when subject to hazardous loadings. On the other hand, RTHS might not yield accurate results for complex structural systems due to experimental and computational limitations. Distributed real-time hybrid simulation (dRTHS), which takes the advantage of distributed laboratory facilities using network communications, was proposed and proven to address some limitations in RTHS. During dRTHS, Internet delay due to the network communication is added to the actuator delay in RTHS, which may cause inaccurate results or even unstable tests. To enable the robust dRTHS environment and expand its applicability to FWT structural systems, this study presents the implementation of the four delay compensation methods in dRTHS, and the application of dRTHS to the FWT prototype. Firstly, delay compensation methods were utilized in dRTHS, and the method yield the best compensation results were identified through dRTHS experiments. Next, a dRTHS was applied to a FWT prototype structure during which the structural responses under wave and wind loads were simulated. The responses verified the feasibility of applying dRTHS to FWT structural response evaluation under hazardous loadings and the robustness of the dRTHS platform developed and tested in this study.
Recommended Citation
Cinar, Mehmet, "Enabling Robust Distributed Real-Time Hybrid Simulation Method and Expanding Its Applications in Floating Wind Turbine Systems" (2018). Masters Theses. 3807.
https://scholarworks.wmich.edu/masters_theses/3807