Date of Award

12-2015

Degree Name

Master of Science in Engineering

Department

Electrical and Computer Engineering

First Advisor

Dr. Steven Durbin

Second Advisor

Dr. Ralph Tanner

Third Advisor

Dr. Muralidhar Ghantasala

Keywords

ZnSnN2, Molecular Beam Epitaxy (MBE), semiconductors, RHEED, othorhombic

Access Setting

Masters Thesis-Open Access

Abstract

Semiconducting materials with a band gap around 1.5 eV are very much sought after due to their close match to the solar spectrum. However, some compounds that have shown promise for highly efficient solar cells contain rare, expensive, and sometimes toxic elements, such as indium and gallium. As such, a search for earth abundant materials has become more prominent recently. One such earth abundant semiconducting material that has garnered interest is ZnSnN2. It has been shown through previous studies that there is the possibility of continuously tuning the band gap between 1.0 and 2.0 eV by controlling the ordering of the cation sub lattice. In this work, ZnSnN2 is grown under varying growth conditions in an attempt to obtain a fully ordered cation sub lattice. The lattice structure is monitored in real time through in-situ RHEED measurements. After growth, the RHEED patterns are analyzed to extract structural data.

Share

COinS